-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
100 lines (82 loc) · 3.19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import json
import torch
import pprint
from tensorboardX import SummaryWriter
import warnings
from config import get_options
import numpy as np
from ppo import PPO
from utils.utils import set_seed
# DummyVectorEnv for Windows or Linux, SubprocVectorEnv for Linux
from env import DummyVectorEnv,SubprocVectorEnv
import platform
from utils.make_dataset import *
from rollout import rollout
def load_agent(name):
agent = {
'ppo': PPO,
}.get(name, None)
assert agent is not None, "Currently unsupported agent: {}!".format(name)
return agent
def run(opts):
# only one mode can be specified in one time, test or train
assert opts.train==None or opts.test==None, 'Between train&test, only one mode can be given in one time'
sys=platform.system()
opts.is_linux=True if sys == 'Linux' else False
torch.multiprocessing.set_sharing_strategy('file_system')
# figure out the max_fes(max function evaluation times), in our experiment, we use 20w for 10D problem and 100w for 30D problem
# Pretty print the run args
pprint.pprint(vars(opts))
# Set the random seed to initialize the network
set_seed(opts.seed)
# Set the device, you can change it according to your actual situation
# opts.device = torch.device("cuda:0")
opts.device = torch.device("cpu")
# Figure out the RL algorithm
# if opts.is_linux:
agent = PPO(opts,SubprocVectorEnv)
# else:
# agent = PPO(opts,DummyVectorEnv)
# Load data from load_path(if provided)
if opts.load_name is not None:
# opts.run_name = opts.load_name
load_path = os.path.join(opts.load_path, opts.load_name)
if opts.load_epoch is None:
epoch_list = os.listdir(load_path)
id_list = []
for eid in epoch_list:
id_list.append(int(eid[6:-3]))
opts.load_epoch = np.max(id_list)
load_path = os.path.join(load_path, f'epoch-{opts.load_epoch}.pt')
agent.load(load_path)
# Do validation only
if opts.test:
# Testing
if opts.load_name is not None:
opts.run_name = opts.load_name
opts.log_dir = os.path.join('rollout_outputs', opts.run_name)
if not os.path.exists(opts.log_dir):
os.makedirs(opts.log_dir)
# Load the validation datasets
training_dataloader, test_dataloader = make_taskset(opts)
set_seed(opts.testseed)
avg_best,sigma,rew=rollout(test_dataloader,opts, agent=agent, run_name=opts.run_name, epoch_id=opts.load_epoch)
print(f'test: gbest_mean:{gbest_mean}, std:{std}, Rewards: {rew}')
else:
# configure tensorboard
path = os.path.join(opts.log_dir, opts.run_name)
if not os.path.exists(path):
os.makedirs(path)
tb_logger = SummaryWriter(path)
set_seed(opts.seed)
# Start the actual training loop
agent.start_training(tb_logger)
if __name__ == "__main__":
warnings.filterwarnings("ignore")
torch.set_num_threads(1)
os.environ['KMP_DUPLICATE_LIB_OK']='True'
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# main process
run(get_options())