-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathpredict_with_model.py
executable file
·139 lines (119 loc) · 5.92 KB
/
predict_with_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np
import pandas as pd
from keras.preprocessing import sequence
import keras
from keras import backend as K
from keras.models import load_model
import argparse
import h5py
seq_rdic = ['A','I','L','V','F','W','Y','N','C','Q','M','S','T','D','E','R','H','K','G','P','O','U','X','B','Z']
seq_dic = {w: i+1 for i,w in enumerate(seq_rdic)}
def encodeSeq(seq, seq_dic):
if pd.isnull(seq):
return [0]
else:
return [seq_dic[aa] for aa in seq]
def encodeSeq(seq, seq_dic):
if pd.isnull(seq):
return [0]
else:
return [seq_dic[aa] for aa in seq]
def parse_data(dti_dir, drug_dir, protein_dir, with_label=True,
prot_len=2500, prot_vec="Convolution",
drug_vec="Convolution", drug_len=2048):
print("Parsing {0} , {1}, {2} with length {3}, type {4}".format(*[dti_dir ,drug_dir, protein_dir, prot_len, prot_vec]))
protein_col = "Protein_ID"
drug_col = "Compound_ID"
col_names = [protein_col, drug_col]
if with_label:
label_col = "Label"
col_names += [label_col]
dti_df = pd.read_csv(dti_dir)
drug_df = pd.read_csv(drug_dir, index_col="Compound_ID")
protein_df = pd.read_csv(protein_dir, index_col="Protein_ID")
if prot_vec == "Convolution":
protein_df["encoded_sequence"] = protein_df.Sequence.map(lambda a: encodeSeq(a, seq_dic))
dti_df = pd.merge(dti_df, protein_df, left_on=protein_col, right_index=True)
dti_df = pd.merge(dti_df, drug_df, left_on=drug_col, right_index=True)
drug_feature = np.stack(dti_df[drug_vec].map(lambda fp: fp.split("\t")))
if prot_vec=="Convolution":
protein_feature = sequence.pad_sequences(dti_df["encoded_sequence"].values, prot_len)
else:
protein_feature = np.stack(dti_df[prot_vec].map(lambda fp: fp.split("\t")))
if with_label:
label = dti_df[label_col].values
print("\tPositive data : %d" %(sum(dti_df[label_col])))
print("\tNegative data : %d" %(dti_df.shape[0] - sum(dti_df[label_col])))
return {"protein_feature": protein_feature, "drug_feature": drug_feature, "label": label,
"Compound_ID":dti_df["Compound_ID"].tolist(), "Protein_ID":dti_df["Protein_ID"].tolist()}
else:
return {"protein_feature": protein_feature, "drug_feature": drug_feature,
"Compound_ID":dti_df["Compound_ID"].tolist(), "Protein_ID":dti_df["Protein_ID"].tolist()}
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument("model")
# test_params
parser.add_argument("--test-name", '-n', help="Name of test data sets", nargs="*")
parser.add_argument("--test-dti-dir", "-i", help="Test dti [drug, target, [label]]", nargs="*")
parser.add_argument("--test-drug-dir", "-d", help="Test drug information [drug, SMILES,[feature_name, ..]]", nargs="*")
parser.add_argument("--test-protein-dir", '-t', help="Test Protein information [protein, seq, [feature_name]]", nargs="*")
parser.add_argument("--with-label", "-W", help="Existence of label information in test DTI", action="store_true", default=False)
parser.add_argument("--output", "-o", help="Prediction output", type=str)
parser.add_argument("--prot-vec", "-v", help="Type of protein feature, if Convolution, it will execute conlvolution on sequeunce", type=str, default="Convolution")
parser.add_argument("--prot-len", "-l", help="Protein vector length", default=2500, type=int)
parser.add_argument("--drug-vec", "-V", help="Type of drug feature", type=str, default="morgan_fp")
parser.add_argument("--drug-len", "-L", help="Drug vector length", default=2048, type=int)
args = parser.parse_args()
model = args.model
test_names = args.test_name
tests = args.test_dti_dir
test_proteins = args.test_protein_dir
test_drugs = args.test_drug_dir
test_sets = zip(test_names, tests, test_drugs, test_proteins)
with_label = args.with_label
output_file = args.output
f = h5py.File(model, 'r+')
try:
f.__delitem__("optimizer_weights")
except:
print("optimizer_weights are already deleted")
f.close()
type_params = {
"prot_vec": args.prot_vec,
"prot_len": args.prot_len,
"drug_vec": args.drug_vec,
"drug_len": args.drug_len,
}
test_dic = {test_name: parse_data(test_dti, test_drug, test_protein, with_label=with_label, **type_params)
for test_name, test_dti, test_drug, test_protein in test_sets}
loaded_model = load_model(model)
print("prediction")
result_df = pd.DataFrame()
result_columns = []
for dataset in test_dic:
temp_df = pd.DataFrame()
prediction_dic = test_dic[dataset]
N = int(np.ceil(prediction_dic["drug_feature"].shape[0]/50))
d_splitted = np.array_split(prediction_dic["drug_feature"], N)
p_splitted = np.array_split(prediction_dic["protein_feature"], N)
predicted = sum([np.squeeze(loaded_model.predict([d,p])).tolist() for d,p in zip(d_splitted, p_splitted)], [])
temp_df[dataset, 'predicted'] = predicted
temp_df[dataset, 'Compound_ID'] = prediction_dic["Compound_ID"]
temp_df[dataset, 'Protein_ID'] = prediction_dic["Protein_ID"]
if with_label:
temp_df[dataset, 'label'] = np.squeeze(test_dic[dataset]['label'])
result_df = pd.concat([result_df, temp_df], ignore_index=True, axis=1)
result_columns.append((dataset, "predicted"))
result_columns.append((dataset, "Compound_ID"))
result_columns.append((dataset, "Protein_ID"))
if with_label:
result_columns.append((dataset, "label"))
result_df.columns = pd.MultiIndex.from_tuples(result_columns)
print("save to %s"%output_file)
result_df.to_csv(output_file, index=False)
'''
predicted = loaded_model.predict([prediction_dic["drug_feature"],prediction_dic["protein_feature"]])
dti_dic = prediction_dic['dti']
dti_dic["predicted"] = predicted
dti_dic.to_csv(output)
'''