-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
218 lines (174 loc) · 9.47 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import tqdm
import time
import numpy as np
from dataset import GeneralDataset
from models import *
from utils import *
def evaluate(arg):
devices = torch.device('cuda:'+arg.gpu_id)
error_rate = []
failure_count = 0
max_threshold = arg.max_threshold
testset = GeneralDataset(dataset=arg.dataset, split=arg.split)
dataloader = torch.utils.data.DataLoader(testset, batch_size=1, shuffle=False, pin_memory=True)
print('***** Normal Evaluating *****')
print('Evaluating parameters:\n' +
'# Dataset: ' + arg.dataset + '\n' +
'# Dataset split: ' + arg.split + '\n' +
'# Epoch of the model: ' + str(arg.eval_epoch) + '\n' +
'# Normalize way: ' + arg.norm_way + '\n' +
'# Max threshold: ' + str(arg.max_threshold) + '\n')
print('Loading network ...')
estimator = Estimator(stacks=arg.hour_stack, msg_pass=arg.msg_pass)
regressor = Regressor(fuse_stages=arg.fuse_stage, output=2*kp_num[arg.dataset])
estimator = load_weights(estimator, arg.save_folder+'estimator_'+str(arg.eval_epoch)+'.pth', devices)
regressor = load_weights(regressor, arg.save_folder+arg.dataset+'_regressor_'+str(arg.eval_epoch)+'.pth', devices)
if arg.cuda:
estimator = estimator.cuda(device=devices)
regressor = regressor.cuda(device=devices)
estimator.eval()
regressor.eval()
print('Loading network done!\nStart testing ...')
time_records = []
with torch.no_grad():
for data in tqdm.tqdm(dataloader):
start = time.time()
input_images, gt_coords_xy, gt_heatmap, coords_xy, bbox, img_name = data
gt_coords_xy = gt_coords_xy.squeeze().numpy()
bbox = bbox.squeeze().numpy()
error_normalize_factor = calc_normalize_factor(arg.dataset, coords_xy.numpy(), arg.norm_way) \
if arg.norm_way in ['inter_pupil', 'inter_ocular'] else (bbox[2] - bbox[0])
input_images = input_images.unsqueeze(1)
input_images = input_images.cuda(device=devices)
pred_heatmaps = estimator(input_images)
pred_coords = regressor(input_images, pred_heatmaps[-1].detach()).detach().cpu().squeeze().numpy()
pred_coords_map_back = inverse_affine(arg, pred_coords, bbox)
time_records.append(time.time() - start)
error_rate_i = calc_error_rate_i(
arg.dataset,
pred_coords_map_back,
coords_xy[0].numpy(),
error_normalize_factor
)
if arg.eval_visual:
eval_heatmap(arg, pred_heatmaps[-1], img_name, bbox, save_img=arg.save_img)
eval_pred_points(arg, pred_coords, img_name, bbox, save_img=arg.save_img)
failure_count = failure_count + 1 if error_rate_i > max_threshold else failure_count
error_rate.append(error_rate_i)
area_under_curve, auc_record = calc_auc(arg.dataset, arg.split, error_rate, max_threshold)
error_rate = sum(error_rate) / dataset_size[arg.dataset][arg.split] * 100
failure_rate = failure_count / dataset_size[arg.dataset][arg.split] * 100
print('\nEvaluating results:\n# AUC: {:.4f}\n# Error Rate: {:.2f}%\n# Failure Rate: {:.2f}%\n'.format(
area_under_curve, error_rate, failure_rate))
print('Average speed: {:.2f}FPS'.format(1./np.mean(np.array(time_records))))
def evaluate_with_gt_heatmap(arg):
devices = torch.device('cuda:' + arg.gpu_id)
error_rate = []
failure_count = 0
max_threshold = arg.max_threshold
testset = GeneralDataset(dataset=arg.dataset, split=arg.split)
dataloader = torch.utils.data.DataLoader(testset, batch_size=1, shuffle=False, pin_memory=True)
print('***** Evaluating with ground truth heatmap *****')
print('Evaluating parameters:\n' +
'# Dataset: ' + arg.dataset + '\n' +
'# Dataset split: ' + arg.split + '\n' +
'# Epoch of the model: ' + str(arg.eval_epoch) + '\n' +
'# Normalize way: ' + arg.norm_way + '\n' +
'# Max threshold: ' + str(arg.max_threshold) + '\n')
print('Loading network...')
regressor = Regressor(fuse_stages=arg.fuse_stage, output=2 * kp_num[arg.dataset])
regressor = load_weights(regressor, arg.save_folder + arg.dataset + '_regressor_' + str(arg.eval_epoch) + '.pth',
devices)
if arg.cuda:
regressor = regressor.cuda(device=devices)
regressor.eval()
print('Loading network done!\nStart testing...')
time_records = []
with torch.no_grad():
for data in tqdm.tqdm(dataloader):
start = time.time()
input_images, gt_coords_xy, gt_heatmap, coords_xy, bbox, img_name = data
bbox = bbox.squeeze().numpy()
error_normalize_factor = calc_normalize_factor(arg.dataset, coords_xy.numpy(), arg.norm_way) \
if arg.norm_way in ['inter_pupil', 'inter_ocular'] else (bbox[2] - bbox[0])
input_images = input_images.unsqueeze(1)
input_images = input_images.cuda(device=devices)
gt_heatmap = gt_heatmap.cuda(device=devices)
pred_coords = regressor(input_images, gt_heatmap).detach().cpu().squeeze().numpy()
pred_coords_map_back = inverse_affine(arg, pred_coords, bbox)
time_records.append(time.time() - start)
error_rate_i = calc_error_rate_i(
arg.dataset,
pred_coords_map_back,
coords_xy[0].numpy(),
error_normalize_factor
)
if arg.eval_visual:
eval_gt_pred_points(arg, gt_coords_xy, pred_coords, img_name, bbox, save_img=arg.save_img)
failure_count = failure_count + 1 if error_rate_i > max_threshold else failure_count
error_rate.append(error_rate_i)
area_under_curve, auc_record = calc_auc(arg.dataset, arg.split, error_rate, max_threshold)
error_rate = sum(error_rate) / dataset_size[arg.dataset][arg.split] * 100
failure_rate = failure_count / dataset_size[arg.dataset][arg.split] * 100
print('\nEvaluating results:\n# AUC: {:.4f}\n# Error Rate: {:.2f}%\n# Failure Rate: {:.2f}%\n'.format(
area_under_curve, error_rate, failure_rate))
print('Average speed: {:.2f}FPS'.format(1. / np.mean(np.array(time_records))))
def evaluate_nparts(arg):
devices = torch.device('cuda:' + arg.gpu_id)
error_rate = []
testset = GeneralDataset(dataset=arg.dataset, split=arg.split)
dataloader = torch.utils.data.DataLoader(testset, batch_size=1, shuffle=False, pin_memory=True)
print('***** Evaluating Different Parts *****')
print('Evaluating parameters:\n' +
'# Dataset: ' + arg.dataset + '\n' +
'# Dataset split: ' + arg.split + '\n' +
'# Epoch of the model: ' + str(arg.eval_epoch) + '\n' +
'# Normalize way: ' + arg.norm_way + '\n' +
'# Max threshold: ' + str(arg.max_threshold) + '\n')
print('Loading network ...')
estimator = Estimator(stacks=arg.hour_stack, msg_pass=arg.msg_pass)
regressor = Regressor(fuse_stages=arg.fuse_stage, output=2 * kp_num[arg.dataset])
estimator = load_weights(estimator, arg.save_folder + 'estimator_' + str(arg.eval_epoch) + '.pth', devices)
regressor = load_weights(regressor, arg.save_folder + arg.dataset + '_regressor_' + str(arg.eval_epoch) + '.pth',
devices)
if arg.cuda:
estimator = estimator.cuda(device=devices)
regressor = regressor.cuda(device=devices)
estimator.eval()
regressor.eval()
print('Loading network done!\nStart testing ...')
time_records = []
with torch.no_grad():
for data in tqdm.tqdm(dataloader):
start = time.time()
input_images, gt_coords_xy, gt_heatmap, coords_xy, bbox, img_name = data
gt_coords_xy = gt_coords_xy.squeeze().numpy()
bbox = bbox.squeeze().numpy()
error_normalize_factor = calc_normalize_factor(arg.dataset, coords_xy.numpy(), arg.norm_way) \
if arg.norm_way in ['inter_pupil', 'inter_ocular'] else (bbox[2] - bbox[0])
input_images = input_images.unsqueeze(1)
input_images = input_images.cuda(device=devices)
pred_heatmaps = estimator(input_images)
pred_coords = regressor(input_images, pred_heatmaps[-1].detach()).detach().cpu().squeeze().numpy()
pred_coords_map_back = inverse_affine(arg, pred_coords, bbox)
time_records.append(time.time() - start)
error_rate_i = calc_error_rate_i_nparts(
arg.dataset,
pred_coords_map_back,
coords_xy[0].numpy(),
error_normalize_factor
)
if arg.eval_visual:
eval_heatmap(arg, pred_heatmaps[-1], img_name, bbox, save_img=arg.save_img)
eval_pred_points(arg, pred_coords, img_name, bbox, save_img=arg.save_img)
error_rate.append(error_rate_i)
error_rate = np.sum(np.array(error_rate), 0) / dataset_size[arg.dataset][arg.split] * 100
print(f'\nEvaluating results:'
f'\nChin Error Rate: {error_rate[0]}%'
f'\nBrow Error Rate: {error_rate[1]}%'
f'\nNose Error Rate: {error_rate[2]}%'
f'\nEyes Error Rate: {error_rate[3]}%'
f'\nMouth Error Rate: {error_rate[4]}%')
print('Average speed: {:.2f}FPS'.format(1. / np.mean(np.array(time_records))))
if __name__ == '__main__':
evaluate_nparts(args)