-
Notifications
You must be signed in to change notification settings - Fork 1
/
experiment_douban.py
193 lines (177 loc) · 10.1 KB
/
experiment_douban.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# -*- coding: utf-8 -*-
# nohup python experiment_douban.py > train.cnn.realmean_max.rnn.log 2>&1 &
# 38090 pid
import os
import lasagne
from config_local import base_model_folder
from context_lasagne import *
from experiment_base import ExpBase
from experiment_base_douban import DoubanDataLoader
def load_pre_trained_lstm():
params = cPickle.load(open(base_model_folder + 'pre2.100.model'))
emb_weights = params[0]
lstm_weights = params[1:]
return emb_weights, lstm_weights
def get_model(context_num, vocab_size, max_len):
# model_file = 'relevance.douban.sm_gru.eye'
# model = DefaultRelevanceModel(context_num + 1, 10, max_len, vocab_size, True, 100,
# base_model_folder + model_file, reg_rate=1e-4,
# kwargs4sm={'name': 'gru', 'n_hidden': 100, 'l2_reg': True, 'drop_sm': 0.2},
# kwargs4predict={'sm_len': 100})
# model_config_log = 'gru[100, l2:1e-4, drop_sm:0.2, drop_embed:0], eye[]'
#
# emb_weights, lstm_weights = load_pre_trained_lstm()
# model_file = 'context.douban.sm_prelstm.mlp'
# model = DefaultMultiTurnModel(context_num + 1, 10, max_len, vocab_size, True, 100,
# base_model_folder + model_file, reg_rate=1e-4,
# embedding_trainable=False, embedding_w=emb_weights,
# kwargs4sm={'name': 'lstm', 'n_hidden': 100, 'l2_reg': True, 'drop_sm': 0.2, 'drop_embedding': 0.2, 'weights': lstm_weights},
# kwargs4predict={'sm_len': 100, 'mlp_hidden': 50})
# model_config_log = 'lstm[pre2.100.model], mlp[h:50]'
#
# model_file = 'context.douban.gru.mlp.large_head2'
# model = DefaultMultiTurnModel(context_num + 1, 10, max_len, vocab_size, True, 50,
# base_model_folder + model_file, reg_rate=1e-4,
# kwargs4sm={'name': 'gru', 'n_hidden': 50, 'l2_reg': True, 'drop_sm': 0.2, 'drop_embedding': 0.2},
# kwargs4predict={'sm_len': 50, 'mlp_hidden': 50})
# model_config_log = 'emb50, gru[pre2.50.model], mlp[h:50]'
#
# model_file = 'context.douban.sm_gru.eye'
# model = MultiEyeMultiTurnModel(context_num + 1, 10, max_len, vocab_size, True, 100,
# base_model_folder + 'context.douban.sm_gru.eye', reg_rate=1e-4,
# kwargs4sm={'name': 'gru', 'n_hidden': 100, 'l2_reg': True, 'drop_sm': 0.2},
# kwargs4predict={'sm_len': 100})
# model_config_log = 'gru[100, l2:1e-4, drop_sm:0.2, drop_embed:0]'
#
# model = MemoryNetworkMultiTrunModel(context_num + 1, 10, max_len, vocab_size, True, 100,
# base_model_folder + 'context.douban.sm_gru.mm.x', reg_rate=1e-4,
# kwargs4sm={'name': 'gru', 'n_hidden': 100, 'l2_reg': True, 'drop_sm': 0.2, 'drop_embedding': 0.2},
# kwargs4predict={'sm_len': 100})
# model_log = 'context size %d, model:context.douban.sm_gru.mm, gru[100, l2:1e-4, drop_sm:0.2, drop_embed:0.2], mm[]' % context_num
#
# model_file = 'context.douban.sm_rnn.rnn'
# model = RNNMutilTurnModel(context_num + 1, 10, max_len, vocab_size, True, 100,
# base_model_folder + model_file, reg_rate=1e-4,
# kwargs4sm={'name': 'rnn', 'n_hidden': 100, 'l2_reg': True, 'drop_sm': 0.2, 'eye': True},
# kwargs4predict={'sm_len': 100, 'rnn_num_unit': 100, 'dense_num_unit': 1, 'type': 'rnn', 'eye': True})
# model_config_log = 'rnn[100, l2:1e-4, drop_sm:0.2, drop_embed:0], rnn[100, eye]'
#
# model_file = 'context.douban.sm_gru.rnn'
# model = RNNMutilTurnModel(context_num + 1, 10, max_len, vocab_size, True, 100,
# base_model_folder + model_file, reg_rate=1e-4,
# kwargs4sm={'name': 'gru', 'n_hidden': 100, 'l2_reg': True, 'drop_sm': 0.2, 'eye': True},
# kwargs4predict={'sm_len': 100, 'rnn_num_unit': 100, 'dense_num_unit': 1, 'type': 'rnn', 'eye': True})
# model_config_log = 'gru[100, l2:1e-4, drop_sm:0.2, drop_embed:0], rnn[100, eye]'
#
model_file = 'context.douban.sm_gru.gru'
model = RNNMutilTurnModel(context_num + 1, 10, max_len, vocab_size, True, 100,
base_model_folder + model_file, reg_rate=1e-4,
kwargs4sm={'name': 'gru', 'n_hidden': 100, 'l2_reg': True, 'drop_sm': 0.2, 'drop_embedding': 0.2},
kwargs4predict={'sm_len': 100, 'rnn_num_unit': 100, 'dense_num_unit': 1, 'type': 'gru'})
model_config_log = 'gru[100, l2:1e-4, drop_sm:0.2, drop_embed:0], gru[100]'
#
# average_exc_pad
# model_file = 'context.douban.sm_cnn.realmean2.rnn'
# model = RNNMutilTurnModel(context_num + 1, 10, max_len, vocab_size, True, 100,
# base_model_folder + model_file, reg_rate=1e-4,
# kwargs4sm={'name': 'cnn', 'mode': 'cnn_mc', 'conv_mode': 'realmean',
# 'num_filters': 1, 'filters': [2, 3, 5],
# 'drop_embedding': 0.2, 'drop_sm': 0.2},
# kwargs4predict={'sm_len': 300, 'rnn_num_unit': 300, 'dense_num_unit': 1, 'type': 'rnn', 'eye': True})
# model_config_log = 'cnn[mc, num_filters:1, filters:[2,3,5], drop_sm:0.2, drop_embed:0.2, realmean], rnn[300, eye]'
#
# model_file = 'context.douban.sm_cnn_attention_f2.masked.realmean.rnn.200w'
# model = RNNMutilTurnModel(context_num + 1, 10, max_len, vocab_size, True, 100,
# base_model_folder + model_file, reg_rate=1e-4,
# kwargs4sm={'name': 'cnn_attention', 'weight_reg': True, 'attention_method': 2, 'step2': False,
# 'conv_mode': 'realmean', 'filters': [2, 3, 5],
# 'drop_embed': 0.2, 'drop_sm': 0.2, 'drop_cnn': 0.2},
# kwargs4predict={'sm_len': 300, 'rnn_num_unit': 300, 'dense_num_unit': 1, 'type': 'rnn'}, learning_rate=0.001)
# model_config_log = 'cnn_attention[filters:[2,3,5], drop_embed:0.2, drop_sm:0.2, drop_cnn:0.2, realmean, l2reg:1e-4, type2], rnn[300, eye]'
#
# model_file = 'context.douban.sm_gru_attention.masked.rnn.200w'
# model = RNNMutilTurnModel(context_num + 1, 10, max_len, vocab_size, True, 100,
# base_model_folder + model_file, reg_rate=1e-4,
# kwargs4sm={'name': 'gru_attention', 'weight_reg': True, 'attention_method': 1, 'step2': False,
# 'n_hidden': 100, 'l2_reg': True,
# 'drop_embed': 0.2, 'drop_sm': 0.2, 'drop_before_att': 0.2},
# kwargs4predict={'sm_len': 100, 'rnn_num_unit': 100, 'dense_num_unit': 1, 'type': 'rnn'}, learning_rate=0.001)
# model_config_log = 'gru_attention[drop_embed:0.2, drop_sm:0.2, drop_before_att:0.2, hidden:100, l2reg:1e-4, type1], rnn[100, eye]'
#
if not os.path.exists(base_model_folder + model_file):
os.mkdir(base_model_folder + model_file)
model_log = 'context size %d, model:%s, %s' % (
context_num, model_file, model_config_log)
return model, model_log
def attention_matrix(exp, epoch2model):
Xs_test, X_masks_test, y_test = exp._load_test_data(None, None)
exp._load_weights(epoch2model)
# print exp.model.masked
attention_probs = exp.model.CNN_attention_getatt_prob(
Xs_test, X_masks_test)
# print exp.model.attention_M.get_value()
for prob in attention_probs:
print prob
def get_rnn_weights(exp, epoch2model):
exp._load_weights(epoch2model)
params = lasagne.layers.get_all_params(model.l_sm, trainable=True)
for param in params:
print param.get_value().shape
def get_weights(exp, epoch2model):
exp._load_weights(epoch2model)
# rnn
params = lasagne.layers.get_all_params(model.l_sm, trainable=True)
fo = open('./weights/all.para', 'w')
for i, param in enumerate(params):
print param.get_value().shape
if i != 0:
np.savetxt('./weights/tmp.%d' % ((i - 1) % 3), param.get_value())
if i != 0 and (i - 1) % 3 == 2:
for j in xrange(3):
with open('./weights/tmp.%d' % j, 'r') as fp:
lines_tmp = ''
for line in fp:
if j != 2:
fo.write(line)
else:
lines_tmp += line.strip() + ' '
if j == 2:
fo.write(lines_tmp[:-1] + '\n')
# mlp
params1 = model.l_dense_hidden.get_params(trainable=True)
params2 = model.l_dense_out.get_params(trainable=True)
w1, b1 = params1[0].get_value(), params1[1].get_value()
w2, b2 = params2[0].get_value(), params2[1].get_value()
print w1.shape
print b1.shape
for w, b in [(w1, b1), (w2, b2)]:
for i in xrange(w.shape[0]):
fo.write(' '.join([str(x) for x in w[i]]) + '\n')
fo.write(' '.join([str(x) for x in b]) + '\n')
fo.close()
if __name__ == '__main__':
context_num = 3
max_len_max = 50
# vocab_path = None
vocab_path = base_model_folder + 'douban.200w.vocab'
# vocab_path = base_model_folder + 'douban.large.10mhead.vocab'
# save_path = base_model_folder + 'douban.large.10mhead.vocab'
data_loader = DoubanDataLoader(
context_num, max_len_max=max_len_max, char=True, vocab_path=vocab_path, save_path=None)
vocab_size = data_loader.vocab_size
max_len = data_loader.max_len
model, model_log = get_model(context_num, vocab_size, max_len)
exp = ExpBase(model, model_log, data_loader, 8)
# attention_matrix(exp, 6)
exp.train(epoch=10, shuffle=True)
# exp.continue_train(epoch=19, last_epoch=0, shuffle=True)
# exp.test(epoch2model=9)
# exp.test_p_at_k(epoch2model=7, balance_test=True, k_list=[1, 2])
# get_rnn_weights(exp, 9)
# exp.back_embedding(epoch2model=9, vocab=data_loader.line_obj.vocab, backfile="./embedding.epoch9.txt")
# test_data = '/mnt/sdb/share/context_online/context.ranker.char.txt'
# test_data = '/mnt/sdb/share/context_online/context.detection.2.editor_labeled.char.txt'
# exp.predict(epoch2model=2, backfile=test_data.replace('char', 'score.large'), testname=test_data, name_non_path=False)
# exp.test(epoch2model=2, testname=test_data, name_non_path=False)
# exp.back_embedding(epoch2model=2, vocab=data_loader.line_obj.vocab, backfile="./weights/embedding.epoch2.txt")
# get_weights(exp, 2)