-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_airs.py
220 lines (172 loc) · 8.54 KB
/
test_airs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from tqdm import tqdm
import network
import utils
import os
import random
import argparse
import numpy as np
from torch.nn import functional as F
from torch.utils import data
from DataLoader import Airs
from utils import ext_transforms as et
from utils import img_transforms as et_img
from metrics import StreamSegMetrics
import torch
import torch.nn as nn
import cv2
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
def get_argparser():
parser = argparse.ArgumentParser()
# Datset Options
parser.add_argument("--epochs", type=str, default=500)
parser.add_argument("--data_root", type=str, default='datasets/airs/',help="path to Dataset")
parser.add_argument("--num_classes", type=int, default=13, help="num classes (default: None)")
# Deeplab Options
parser.add_argument("--model", type=str, default='deeplabv3plus_resnet101',
choices=['deeplabv3_resnet50', 'deeplabv3plus_resnet50',
'deeplabv3_resnet101', 'deeplabv3plus_resnet101',
'deeplabv3_mobilenet', 'deeplabv3plus_mobilenet'], help='model name')
parser.add_argument("--output_stride", type=int, default=16, choices=[8, 16])
# Train Options
parser.add_argument("--test_only", action='store_true', default=True)
parser.add_argument("--save_val_results", action='store_true', default=False,
help="save segmentation results to \"./results_airsim\"")
parser.add_argument("--val_batch_size", type=int, default=1, help='batch size for validation (default: 4)')
parser.add_argument("--gpu_id", type=str, default='0',help="GPU ID")
return parser
colors = ["#804080",
"#F423E8",
"#DC143C",
"#0000E8",
"#770B20",
"#464646",
"#66669C",
"#BE9999",
"#DCDC00",
"#FAAA1E",
"#6B8E23",
"#4682B4",
"#000000"]
def get_dataset(opts, file):
""" Dataset And Augmentation
"""
train_transform = et.ExtCompose([
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
data_dst = Airs(img_dir=opts.data_root, csv_file=opts.data_root + file, transform=train_transform)
return data_dst
def validate(opts, model, loader, device, metrics, ret_samples_ids=None, path=None):
"""Do validation and return specified samples"""
metrics.reset()
ret_samples = []
if opts.save_val_results:
if not os.path.exists('results'):
os.mkdir('results')
denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
img_id = 0
if not os.path.exists(path):
os.mkdir(path)
with torch.no_grad():
for i, (images, labels, img_name, label_name) in tqdm(enumerate(loader)):
images = images.to(device, dtype=torch.float32)
labels = labels.to(device, dtype=torch.long)
outputs = model(images)
outputs = F.interpolate(outputs, size=[images.size(
2), images.size(3)], mode='bilinear', align_corners=False)
preds = outputs.detach().max(dim=1)[1].cpu().numpy()
targets = labels.cpu().numpy()
metrics.update(targets, preds)
if ret_samples_ids is not None and i in ret_samples_ids: # get vis samples
ret_samples.append(
(images[0].detach().cpu().numpy(), targets[0], preds[0]))
vmax = preds.max() + 1
cmap = matplotlib.colors.ListedColormap(colors[:vmax])
matplotlib.pyplot.imsave(path + img_name[0][-10:], preds.squeeze(), cmap=cmap)
# cv2.imwrite(path + img_name[0][-10:], preds.squeeze(),preds)
vmax = labels.max() + 1
cmap = matplotlib.colors.ListedColormap(colors[:vmax])
matplotlib.pyplot.imsave(path + img_name[0][-10:], targets.squeeze(), cmap=cmap)
score = metrics.get_results()
return score, ret_samples
opts = get_argparser().parse_args()
def main():
opts.num_classes = 13
os.environ['CUDA_VISIBLE_DEVICES'] = opts.gpu_id
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("Device: %s" % device)
# Set up model
model_map = {
'deeplabv3_resnet50': network.deeplabv3_resnet50,
'deeplabv3plus_resnet50': network.deeplabv3plus_resnet50,
'deeplabv3_resnet101': network.deeplabv3_resnet101,
'deeplabv3plus_resnet101': network.deeplabv3plus_resnet101,
'deeplabv3_mobilenet': network.deeplabv3_mobilenet,
'deeplabv3plus_mobilenet': network.deeplabv3plus_mobilenet
}
model = model_map[opts.model](num_classes=opts.num_classes, output_stride=opts.output_stride)
checkpoint = torch.load('./runs/airs.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint["model_state"])
model = nn.DataParallel(model)
model.to(device)
metrics = StreamSegMetrics(opts.num_classes)
if opts.test_only:
model.eval()
vis_sample_id = None
if not os.path.exists('results_airs'):
os.mkdir('results_airs')
val_dst = get_dataset(opts, file='uav02_test_gt.csv')
val_loader = data.DataLoader(
val_dst, batch_size=1, shuffle=True, num_workers=4)
val_score, ret_samples = validate(opts=opts, model=model, loader=val_loader, device=device,
metrics=metrics, ret_samples_ids=vis_sample_id, path='results_airs/uav02/')
print(metrics.to_str(val_score))
val_dst = get_dataset(opts, file='uav03_test_gt.csv')
val_loader = data.DataLoader(
val_dst, batch_size=1, shuffle=True, num_workers=4)
val_score, ret_samples = validate(opts=opts, model=model, loader=val_loader, device=device,
metrics=metrics, ret_samples_ids=vis_sample_id, path='results_airs/uav03/')
print(metrics.to_str(val_score))
val_dst = get_dataset(opts, file='uav04_test_gt.csv')
val_loader = data.DataLoader(
val_dst, batch_size=1, shuffle=True, num_workers=4)
val_score, ret_samples = validate(opts=opts, model=model, loader=val_loader, device=device,
metrics=metrics, ret_samples_ids=vis_sample_id, path='results_airs/uav04/')
print(metrics.to_str(val_score))
val_dst = get_dataset(opts, file='uav05_test_gt.csv')
val_loader = data.DataLoader(
val_dst, batch_size=1, shuffle=True, num_workers=4)
val_score, ret_samples = validate(opts=opts, model=model, loader=val_loader, device=device,
metrics=metrics, ret_samples_ids=vis_sample_id, path='results_airs/uav05/')
print(metrics.to_str(val_score))
val_dst = get_dataset(opts, file='uav06_test_gt.csv')
val_loader = data.DataLoader(
val_dst, batch_size=1, shuffle=True, num_workers=4)
val_score, ret_samples = validate(opts=opts, model=model, loader=val_loader, device=device,
metrics=metrics, ret_samples_ids=vis_sample_id, path='results_airs/uav06/')
print(metrics.to_str(val_score))
val_dst = get_dataset(opts, file='uav07_test_gt.csv')
val_loader = data.DataLoader(
val_dst, batch_size=1, shuffle=True, num_workers=4)
val_score, ret_samples = validate(opts=opts, model=model, loader=val_loader, device=device,
metrics=metrics, ret_samples_ids=vis_sample_id, path='results_airs/uav07/')
print(metrics.to_str(val_score))
val_dst = get_dataset(opts, file='uav08_test_gt.csv')
val_loader = data.DataLoader(
val_dst, batch_size=1, shuffle=True, num_workers=4)
val_score, ret_samples = validate(opts=opts, model=model, loader=val_loader, device=device,
metrics=metrics, ret_samples_ids=vis_sample_id, path='results_airs/uav08/')
print(metrics.to_str(val_score))
val_dst = get_dataset(opts, file='uav09_test_gt.csv')
val_loader = data.DataLoader(
val_dst, batch_size=1, shuffle=True, num_workers=4)
val_score, ret_samples = validate(opts=opts, model=model, loader=val_loader, device=device,
metrics=metrics, ret_samples_ids=vis_sample_id, path='results_airs/uav09/')
print(metrics.to_str(val_score))
return
if __name__ == '__main__':
main()