-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
89 lines (75 loc) · 2.66 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# by Liguang Zhou, 2020.9.30
import torch
import torch.nn as nn
class Object_IOM(nn.Module):
def __init__(self):
super(Object_IOM, self).__init__()
self.fc1 = nn.Linear(150, 512)
def forward(self, x):
out = self.fc1(x)
return out
class Object_CDOPM_ResNet18(nn.Module):
def __init__(self):
super(Object_CDOPM_ResNet18, self).__init__()
self.fc1 = nn.Linear(22500, 4096)
self.fc2 = nn.Linear(4096, 512)
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
out = self.fc1(x)
# out = self.dropout(out)
# out = self.relu(out)
out = self.fc2(out)
return out
class Object_CDOPM_ResNet50(nn.Module):
def __init__(self):
super(Object_CDOPM_ResNet50, self).__init__()
self.fc1 = nn.Linear(22500, 8192)
self.fc2 = nn.Linear(8192, 2048)
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.dropout(out)
out = self.fc2(out)
return out
class Fusion_CDOPM_ResNet18(nn.Module):
def __init__(self, num_classes):
super(Fusion_CDOPM_ResNet18, self).__init__()
self.num_classes = num_classes
self.fc1 = nn.Linear(1024, 512)
self.fc2 = nn.Linear(512, self.num_classes)
self.dropout = nn.Dropout(0.5)
self.relu = nn.ReLU(inplace=True)
def forward(self, conv, idt):
out = torch.cat((conv,idt),1)
out = self.fc1(out)
out = self.dropout(out)
out = self.relu(out)
out = self.fc2(out)
return out
class Fusion_CDOPM_ResNet50(nn.Module):
def __init__(self, num_classes):
super(Fusion_CDOPM_ResNet50, self).__init__()
self.num_classes = num_classes
self.fc1 = nn.Linear(4096, 512)
self.fc2 = nn.Linear(512, self.num_classes)
self.dropout = nn.Dropout(0.5)
self.relu = nn.ReLU(inplace=True)
def forward(self, conv, idt):
out = torch.cat((conv,idt),1)
out = self.fc1(out)
out = self.relu(out)
out = self.dropout(out)
out = self.fc2(out)
return out
class Fusion_CIOM(nn.Module):
def __init__(self,num_classes):
super(LinClassifier_CIOM, self).__init__()
self.num_classes = num_classes
self.fc = nn.Linear(2560, num_classes)
def forward(self, conv, idt):
out = torch.cat((conv,idt),1)
out = self.fc(out)
return out