-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patharguments.py
75 lines (67 loc) · 3.87 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Developed by Liguang Zhou, 2020.9.30
import argparse
import torchvision.models as models
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
# print('model_names:', model_names)
BATCH_SIZE = 128
Epochs = 40
Learning_rate = 0.01
Momentum = 0.9
Weight_decay = 1e-4
Num_classes = 14
DIS_SCALE = 1.0
class arguments_parse(object):
def argsParser():
parser = argparse.ArgumentParser(description='Training of CIOM model')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet50',
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet50)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=Epochs, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=BATCH_SIZE, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=Learning_rate, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=500, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_false',
help='use pre-trained model')
parser.add_argument('--num_classes',default=Num_classes, type=int,
help='num of class in the model')
parser.add_argument('--om_cls_num',default=150,type=int,
help='num of class of the model model')
parser.add_argument('--dataset',default='Places365-14',type=str,
help='Choose the dataset used for training')
parser.add_argument('--om_type', default='copm_resnet50', type=str,
help='choose the type of object model')
parser.add_argument('--DIS_SCALE',default=DIS_SCALE,type=float,
help='choose the scale of discriminative matrix')
args = parser.parse_args()
return args
def test_argsParser():
parser = argparse.ArgumentParser(description='Testing of CIOM model')
parser.add_argument('--dataset',default='Places365-14',type=str,
help='Choose the dataset used for training')
parser.add_argument('--num_classes',default=14, type=int,
help='num of class in the model')
parser.add_argument('--om_type', default='copm_resnet50', type=str,
help='choose the type of object model')
parser.add_argument('--DIS_SCALE',default=DIS_SCALE,type=float,
help='choose the scale of discriminative matrix')
args = parser.parse_args()
return args