-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathgoldenrun.py
463 lines (373 loc) · 16.7 KB
/
goldenrun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# Copyright (c) 2021 Florian Andreas Hauschild
# Copyright (c) 2021 Fraunhofer AISEC
# Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import logging
from multiprocessing import Queue
import numpy
import pandas as pd
from tqdm import tqdm
from calculate_trigger import calculate_trigger_addresses
from faultclass import Fault
from faultclass import python_worker
logger = logging.getLogger(__name__)
def run_goldenrun(
config_qemu, qemu_output, data_queue, faultconfig, qemu_pre=None, qemu_post=None
):
dummyfaultlist = [Fault(0, [], 0, 0, 0, 0, 0, 100, 0, False)]
queue_output = Queue()
goldenrun_config = {}
goldenrun_config["qemu"] = config_qemu["qemu"]
goldenrun_config["kernel"] = config_qemu["kernel"]
goldenrun_config["plugin"] = config_qemu["plugin"]
goldenrun_config["machine"] = config_qemu["machine"]
goldenrun_config["additional_qemu_args"] = config_qemu["additional_qemu_args"]
goldenrun_config["bios"] = config_qemu["bios"]
goldenrun_config["ring_buffer"] = config_qemu["ring_buffer"]
goldenrun_config["tb_exec_list"] = True
goldenrun_config["tb_info"] = True
goldenrun_config["mem_info"] = config_qemu["mem_info"]
if "max_instruction_count" in config_qemu:
goldenrun_config["max_instruction_count"] = config_qemu["max_instruction_count"]
if "memorydump" in config_qemu:
goldenrun_config["memorydump"] = config_qemu["memorydump"]
experiments = []
if "start" in config_qemu:
pre_goldenrun = {"type": "pre_goldenrun", "index": -2, "data": {}}
experiments.append(pre_goldenrun)
goldenrun = {"type": "goldenrun", "index": -1, "data": {}}
experiments.append(goldenrun)
for experiment in experiments:
if experiment["type"] == "pre_goldenrun":
goldenrun_config["end"] = [config_qemu["start"]]
# Set max_insn_count to ridiculous high number to never reach it
goldenrun_config["max_instruction_count"] = 10000000000000
elif experiment["type"] == "goldenrun":
if "start" in config_qemu:
goldenrun_config["start"] = config_qemu["start"]
if "end" in config_qemu:
goldenrun_config["end"] = config_qemu["end"]
if "start" in config_qemu and "end" in config_qemu:
# Set max_insn_count to ridiculous high number to never reach it
goldenrun_config["max_instruction_count"] = 10000000000000
logger.info(f"{experiment['type']} started...")
python_worker(
dummyfaultlist,
goldenrun_config,
experiment["index"],
queue_output,
qemu_output,
None,
False,
None,
qemu_pre,
qemu_post,
)
experiment["data"] = queue_output.get()
if experiment["data"]["end_reason"] == "max tb":
logger.critical(
f"{experiment['type']} not finished after "
f"{goldenrun_config['max_instruction_count']} tb counts."
)
raise ValueError(
f"{experiment['type']} not finished. Probably no valid instruction! "
f"If valid increase tb max for golden run"
)
logger.info(f"{experiment['type']} successfully finished.")
data_queue.put(experiment["data"])
if experiment["type"] != "goldenrun":
continue
tbexec = pd.DataFrame(experiment["data"]["tbexec"])
tbinfo = pd.DataFrame(experiment["data"]["tbinfo"])
process_wildcard_faults(faultconfig, tbexec, tbinfo)
process_single_faults(faultconfig, tbexec, tbinfo)
calculate_trigger_addresses(faultconfig, tbexec, tbinfo)
faultconfig = checktriggers_in_tb(faultconfig, experiment["data"])
if "end" in config_qemu:
for tb in experiment["data"]["tbinfo"]:
config_qemu["max_instruction_count"] += tb["num_exec"] * tb["ins_count"]
logger.debug(
"Max instruction count is {}".format(
config_qemu["max_instruction_count"]
)
)
return [config_qemu["max_instruction_count"], experiment["data"], faultconfig]
def find_insn_addresses_in_tb(insn_address, data):
tb_list_found = []
tbinfolist = data["tbinfo"]
for tbinfo in tbinfolist:
if (insn_address >= tbinfo["id"]) and (
insn_address < tbinfo["id"] + tbinfo["size"]
):
tb_list_found.append(tbinfo)
if len(tb_list_found) == 0:
return False
else:
return True
def checktriggers_in_tb(faultconfig, data):
valid_triggers = []
invalid_triggers = []
for faultdescription in faultconfig:
logger.debug(
"Check Fault {}/{} for valid trigger".format(
faultdescription["index"] + 1, len(faultconfig)
)
)
for fault in faultdescription["faultlist"]:
if fault.trigger.address in valid_triggers:
continue
if fault.trigger.address in invalid_triggers:
faultdescription["delete"] = True
continue
if find_insn_addresses_in_tb(fault.trigger.address, data):
valid_triggers.append(fault.trigger.address)
continue
# If Fault is instruction fault and hitcounter 0 let it pass independent
# of the fault trigger address, as it is not used by the faultplugin
if fault.trigger.hitcounter == 0 and fault.model == 3:
continue
invalid_triggers.append(fault.trigger.address)
faultdescription["delete"] = True
error_message = (
f"Trigger address {fault.trigger.address} not found in tbs "
f"executed in golden run! \nInvalid fault description: "
f"{faultdescription}"
)
for fault in faultdescription["faultlist"]:
error_message += (
f"\nfault: {fault}, "
f"triggeraddress: {fault.trigger.address}, "
f"faultaddress: {fault.address}"
)
logger.critical(error_message)
logger.info("Filtering faultlist ...")
len_faultlist = len(faultconfig)
tmp = pd.DataFrame(faultconfig)
tmp = tmp.query("delete == False").copy()
tmp.reset_index(drop=True, inplace=True)
tmp["index"] = tmp.index
faultconfig = tmp.to_dict("records")
logger.info(f"{len(faultconfig)}/{len_faultlist} faults passed the filter.")
return faultconfig
def generate_wildcard_faults(fault, tbexec, tbinfo):
# Initialize list of TBs used during fault generation
tb_start = tbinfo["id"].copy()
tb_start.index = tbinfo["id"]
tb_end = tbinfo["id"] + tbinfo["size"] - 1
tb_end.index = tbinfo["id"]
tb_hitcounters = pd.DataFrame(
{
"hitcounter": pd.Series(0, index=tbinfo["id"]),
"tb_start": tb_start,
"tb_end": tb_end,
}
)
wildcard_faults = []
range_start_counter = fault.address["start"].hitcounter
range_end_counter = 0
wildcard_range_end_reached = False
wildcard_local_active = False
tbinfo_tb_indexed = tbinfo.set_index("id")
for tb in tqdm(tbexec["tb"], leave=False):
tb_hitcounters_analyzed = False
# Instruction-specific hitcounters
instr_hitcounters = []
# Get and update TB-specific hitcounter
tb_hitcounter = tb_hitcounters.at[tb, "hitcounter"]
tb_hitcounters.at[tb, "hitcounter"] += 1
# Iterate over instructions in the translation block
tb_info_asm = tbinfo_tb_indexed.at[tb, "assembler"]
tb_info_total_size = tbinfo_tb_indexed.at[tb, "size"]
tb_info_asm = [
int(instr.split("]")[0], 16) for instr in tb_info_asm.split("[ ")[1:]
]
tb_info_size = list(numpy.diff(tb_info_asm))
tb_info_size.append(
tb_info_total_size - sum(tb_info_size)
) # calculate the last instr size
for idx, instr in enumerate(tb_info_asm):
# Evaluate start and stop conditions (global)
# Detect range end address if specified (hitcounter != 0)
if fault.address["end"].hitcounter != 0:
if instr == fault.address["end"].address:
range_end_counter += 1
# Range start and end conditions met, stop after this
# instruction
if (
range_start_counter == 0
and range_end_counter == fault.address["end"].hitcounter
):
wildcard_range_end_reached = True
# If we already encountered the range start address, the counter
# will be 0. If no range start address is specified, it will be 0
# as well.
if range_start_counter != 0:
if instr == fault.address["start"].address:
range_start_counter -= 1
else:
continue
if range_start_counter != 0:
# Range start condition is not met. It will also not be met
# with the remaining instructions in the current TB. We
# continue anyways in case the range end address is in the
# current TB to update the range_end_counter.
continue
# Evaluate start and stop conditions (local)
if fault.address["local"]:
# Start local wildcard range
if instr == fault.address["start"].address:
wildcard_local_active = True
if wildcard_local_active is False:
continue
# Stop local wildcard fault generation with this instruction
# until the next range start address is found
if instr == fault.address["end"].address:
wildcard_local_active = False
# Evaluate exclude ranges
if any(instr in region for region in fault.address_exclude):
logger.debug(f"Exclude {fault.address_exclude} filtered {hex(instr)}")
continue
# Analyze TB to find TB and instruction specific adjustments to
# the hitcounter of the expanded fault
if tb_hitcounters_analyzed is False:
tb_hitcounters_analyzed = True
# Are we a sub-TB?
sub_tbs = tb_hitcounters[
(tb > tb_hitcounters["tb_start"]) & (tb <= tb_hitcounters["tb_end"])
]
for _, sub_tb_data in sub_tbs.iterrows():
tb_hitcounter += sub_tb_data["hitcounter"]
# Calculate instruction-specific hitcounter -> do we contain
# sub-TBs?
last_instr = tb_hitcounters.loc[tb, "tb_end"]
sub_tbs = tb_hitcounters[
(tb < tb_hitcounters["tb_start"])
& (last_instr > tb_hitcounters["tb_start"])
& (last_instr <= tb_hitcounters["tb_end"])
]
for _, sub_tb_data in sub_tbs.iterrows():
instr_hitcounters.append(
{
"start_address": sub_tb_data["tb_start"],
"hitcounter": sub_tb_data["hitcounter"],
}
)
# Generate expanded wildcard fault
# Copy wildcard fault and modify it to target the current
# instruction
instr_fault = copy.deepcopy(fault)
instr_fault.wildcard = False
instr_fault.address = instr
# Add TB-specific hitcounter
instr_fault.trigger.hitcounter = 1 + tb_hitcounter
# Add instruction-specific hitcounter if present
for instr_hitcounter in instr_hitcounters:
if instr >= instr_hitcounter["start_address"]:
instr_fault.trigger.hitcounter += instr_hitcounter["hitcounter"]
# Set instruction width specific faultmask
if isinstance(instr_fault.mask, dict):
instr_fault.mask = instr_fault.mask[str(tb_info_size[idx])]
instr_fault.num_bytes = tb_info_size[idx]
wildcard_faults.append(instr_fault)
if wildcard_range_end_reached:
break
if wildcard_range_end_reached:
break
# Detect unmet range conditions
if range_start_counter != 0:
logger.critical(
"Start of wildcard fault range not encountered: address "
f"0x{fault.address['start'].address:x}, hitcounter "
f"{fault.address['start'].hitcounter}"
)
exit(1)
if fault.address["end"].hitcounter != 0 and wildcard_range_end_reached is False:
logger.critical(
"End of wildcard fault range not encountered: address "
f"0x{fault.address['end'].address:x}, hitcounter "
f"{fault.address['end'].hitcounter}"
)
exit(1)
return wildcard_faults
def process_wildcard_faults(faultconfig, tbexec, tbinfo):
logger.info("Identifying and processing wildcard faults")
# Construct index base from last fault entry
index_base = faultconfig[-1]["index"] + 1
wildcard_faults = []
n_wildcard_faults = 0
for faultentry in faultconfig:
for fault in faultentry["faultlist"]:
if fault.wildcard:
n_wildcard_faults = n_wildcard_faults + 1
if n_wildcard_faults == 0:
logger.info("No wildcard fault")
return
pbar = tqdm(total=n_wildcard_faults, desc="Processing wildcards")
for faultentry in faultconfig:
expanded_faults = []
for fault in faultentry["faultlist"]:
if fault.wildcard:
wildcard_faults += generate_wildcard_faults(fault, tbexec, tbinfo)
# The wildcard fault entry has been expanded, mark it for
# removal
expanded_faults.append(fault)
# Update the progress bar
pbar.update(1)
# Remove expanded wildcard fault entries
for fault in expanded_faults:
faultentry["faultlist"].remove(fault)
if len(faultentry["faultlist"]) == 0:
faultentry["delete"] = True
pbar.close()
# Add generated fault entries to faultconfig
for i in range(len(wildcard_faults)):
new_fault_entry = {}
new_fault_entry["index"] = index_base + i
new_fault_entry["faultlist"] = [wildcard_faults[i]]
new_fault_entry["delete"] = False
faultconfig.append(new_fault_entry)
def process_single_faults(faultconfig, tbexec, tbinfo):
remove_list = []
for faultentry in faultconfig:
for fault in faultentry["faultlist"]:
if not isinstance(fault.mask, dict):
continue
tbinfo_tb_indexed = tbinfo.set_index("id")
for tb in tqdm(tbexec["tb"], leave=False):
tb_info_asm = tbinfo_tb_indexed.at[tb, "assembler"]
tb_info_total_size = tbinfo_tb_indexed.at[tb, "size"]
tb_info_asm = [
int(instr.split("]")[0], 16)
for instr in tb_info_asm.split("[ ")[1:]
]
if fault.address not in tb_info_asm:
continue
tb_info_size = list(numpy.diff(tb_info_asm))
tb_info_size.append(
tb_info_total_size - sum(tb_info_size)
) # calculate the last instr size
fault_idx = tb_info_asm.index(fault.address)
try:
fault.mask = fault.mask[str(tb_info_size[fault_idx])]
fault.num_bytes = tb_info_size[fault_idx]
except (ValueError, KeyError):
logger.info(
f"No matching fault mask could be found for fault entry {faultentry['index']}, "
f"removing the fault entry..."
)
remove_list.append(faultentry)
break
for faultentry in remove_list:
faultconfig.remove(faultentry)