-
Notifications
You must be signed in to change notification settings - Fork 0
/
KMP_algoritm.py
73 lines (57 loc) · 1.53 KB
/
KMP_algoritm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Python implementation of KMP (Knuth Morris Pratt)
# pattern-matching algorithm. Worst case time complexity
# O(n + m) where n is the length of text and m is the length
# of the pattern to be found. Auxiliary space: O(M)
# Worst case is as better than naive search and equal to
# Rabin-Karp algorithm.
def KMPSearch(pat, txt):
M = len(pat)
N = len(txt)
# create lps[] that will hold the longest prefix suffix
# values for pattern
lps = [0]*M
j = 0 # index for pat[]
# Preprocess the pattern (calculate lps[] array)
computeLPSArray(pat, M, lps)
i = 0 # index for txt[]
while (N - i) >= (M - j):
if pat[j] == txt[i]:
i += 1
j += 1
if j == M:
print("Found pattern at index " + str(i-j))
j = lps[j-1]
# mismatch after j matches
elif i < N and pat[j] != txt[i]:
# Do not match lps[0..lps[j-1]] characters,
# they will match anyway
if j != 0:
j = lps[j-1]
else:
i += 1
# Function to compute LPS array
def computeLPSArray(pat, M, lps):
len = 0 # length of the previous longest prefix suffix
lps[0] = 0 # lps[0] is always 0
i = 1
# the loop calculates lps[i] for i = 1 to M-1
while i < M:
if pat[i] == pat[len]:
len += 1
lps[i] = len
i += 1
else:
# This is tricky. Consider the example.
# AAACAAAA and i = 7. The idea is similar
# to search step.
if len != 0:
len = lps[len-1]
# Also, note that we do not increment i here
else:
lps[i] = 0
i += 1
# Driver code
if __name__ == '__main__':
txt = "ABABDABACDABABCABAB"
pat = "ABABCABAB"
KMPSearch(pat, txt)