-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblack_scholes_prb.f
380 lines (331 loc) · 9.05 KB
/
black_scholes_prb.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
program main
c*********************************************************************72
c
cc MAIN is the main program for BLACK_SCHOLES_PRB.
c
c Discussion:
c
c BLACK_SCHOLES_PRB tests the BLACK_SCHOLES library.
c
c Licensing:
c
c This code is distributed under the GNU LGPL license.
c
c Modified:
c
c 17 February 2012
c
c Author:
c
c John Burkardt
c
implicit none
call timestamp ( );
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'BLACK_SCHOLES_PRB:'
write ( *, '(a)' ) ' FORTRAN77 version'
write ( *, '(a)' ) ' Test the BLACK_SCHOLES library.'
call asset_path_test ( )
call binomial_test ( )
call bsf_test ( )
call forward_test ( )
call mc_test ( )
c
c Terminate.
c
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'BLACK_SCHOLES_PRB:'
write ( *, '(a)' ) ' Normal end of execution.'
write ( *, '(a)' ) ' '
call timestamp ( )
return
end
subroutine asset_path_test ( )
c*********************************************************************72
c
cc ASSET_PATH_TEST tests ASSET_PATH.
c
c Licensing:
c
c This code is distributed under the GNU LGPL license.
c
c Modified:
c
c 17 February 2012
c
c Author:
c
c John Burkardt
c
implicit none
integer n
parameter ( n = 100 )
double precision mu
character * ( 100 ) output_filename
double precision s(0:n)
double precision s0
integer seed
double precision sigma
double precision t1
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'ASSET_PATH_TEST:'
write ( *, '(a)' )
& ' Demonstrate the simulated of an asset price path.'
s0 = 2.0D+00
mu = 0.1D+00
sigma = 0.3D+00
t1 = 1.0D+00
seed = 123456789
write ( *, '(a,g14.6)' ) ' '
write ( *, '(a,g14.6)' )
& ' The asset price at time 0 S0 = ', s0
write ( *, '(a,g14.6)' )
& ' The asset expected growth rate MU = ', mu
write ( *, '(a,g14.6)' )
& ' The asset volatility SIGMA = ', sigma
write ( *, '(a,g14.6)' )
& ' The expiry date T1 = ', t1
write ( *, '(a,i6)' )
& ' The number of time steps N = ', n
write ( *, '(a,i12)' )
& ' The random number seed was SEED = ', seed
call asset_path ( s0, mu, sigma, t1, n, seed, s )
call r8vec_print_part ( n + 1, s, 10, ' Partial results:' )
output_filename = 'asset_path.txt'
call r8vec_write ( output_filename, n + 1, s )
write ( *, '(a)' ) ' '
write ( *, '(a)' ) ' Full results written to "'
& // trim ( output_filename ) // '".'
return
end
subroutine binomial_test ( )
c*********************************************************************72
c
cc BINOMIAL_TEST tests BINOMIAL.
c
c Licensing:
c
c This code is distributed under the GNU LGPL license.
c
c Modified:
c
c 17 February 2012
c
c Author:
c
c John Burkardt
c
implicit none
double precision c
double precision e
integer m
double precision r
double precision s0
double precision sigma
double precision t1
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'BINOMIAL_TEST:'
write ( *, '(a)' ) ' A demonstration of the binomial method'
write ( *, '(a)' ) ' for option valuation.'
s0 = 2.0D+00
e = 1.0D+00
r = 0.05D+00
sigma = 0.25D+00
t1 = 3.0D+00
m = 256
write ( *, '(a)' ) ' '
write ( *, '(a,g14.6)' )
& ' The asset price at time 0 S0 = ', s0
write ( *, '(a,g14.6)' )
& ' The exercise price E = ', e
write ( *, '(a,g14.6)' )
& ' The interest rate R = ', r
write ( *, '(a,g14.6)' )
& ' The asset volatility SIGMA = ', sigma
write ( *, '(a,g14.6)' )
& ' The expiry date T1 = ', t1
write ( *, '(a,i8)' )
& ' The number of intervals M = ', m
call binomial ( s0, e, r, sigma, t1, m, c )
write ( *, '(a)' ) ' '
write ( *, '(a,g14.6)' ) ' The option value is ', c
return
end
subroutine bsf_test ( )
c*********************************************************************72
c
cc BSF_TEST tests BSF.
c
c Licensing:
c
c This code is distributed under the GNU LGPL license.
c
c Modified:
c
c 17 February 2012
c
c Author:
c
c John Burkardt
c
implicit none
double precision c
double precision e
double precision r
double precision s0
double precision sigma
double precision t0
double precision t1
write ( *, '(a)' )
write ( *, '(a)' ) 'BSF_TEST:'
write ( *, '(a)' )
& ' A demonstration of the Black-Scholes formula'
write ( *, '(a)' ) ' for option valuation.'
s0 = 2.0D+00
t0 = 0.0D+00
e = 1.0D+00
r = 0.05D+00
sigma = 0.25D+00
t1 = 3.0D+00
write ( *, '(a)' ) ' '
write ( *, '(a,g14.6)' )
& ' The asset price at time T0 S0 = ', s0
write ( *, '(a,g14.6)' )
& ' The time T0 = ', t0
write ( *, '(a,g14.6)' )
& ' The exercise price E = ', e
write ( *, '(a,g14.6)' )
& ' The interest rate R = ', r
write ( *, '(a,g14.6)' )
& ' The asset volatility SIGMA = ', sigma
write ( *, '(a,g14.6)' )
& ' The expiry date T1 = ', t1
call bsf ( s0, t0, e, r, sigma, t1, c )
write ( *, '(a)' ) ' '
write ( *, '(a,g14.6)' ) ' The option value C = ', c
return
end
subroutine forward_test ( )
c*********************************************************************72
c
cc FORWARD_TEST tests FORWARD.
c
c Licensing:
c
c This code is distributed under the GNU LGPL license.
c
c Modified:
c
c 17 February 2012
c
c Author:
c
c John Burkardt
c
implicit none
integer nt
parameter ( nt = 29 )
integer nx
parameter ( nx = 11 )
double precision e
integer i
double precision r
double precision s
double precision sigma
double precision smax
double precision smin
double precision t1
double precision u(nx-1,nt+1)
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'FORWARD_TEST:'
write ( *, '(a)' )
& ' A demonstration of the forward difference method'
write ( *, '(a)' ) ' for option valuation.'
e = 4.0D+00
r = 0.03D+00
sigma = 0.50D+00
t1 = 1.0D+00
smax = 10.0D+00
write ( *, '(a)' ) ' '
write ( *, '(a,g14.6)' )
& ' The exercise price E = ', e
write ( *, '(a,g14.6)' )
& ' The interest rate R = ', r
write ( *, '(a,g14.6)' )
& ' The asset volatility SIGMA = ', sigma;
write ( *, '(a,g14.6)' )
& ' The expiry date T1 = ', t1
write ( *, '(a,i8)' )
& ' The number of space steps NX = ', nx
write ( *, '(a,i8)' )
& ' The number of time steps NT = ', nt
write ( *, '(a,g14.6)' )
& ' The value of SMAX = ', smax
call forward ( e, r, sigma, t1, nx, nt, smax, u )
write ( *, '(a)' ) ' '
write ( *, '(a)' ) ' Initial Option'
write ( *, '(a)' ) ' Value Value'
write ( *, '(a)' ) ' '
smin = 0.0D+00
do i = 1, nx - 1
s = ( ( nx - i - 1 ) * smin + i * smax ) / dble ( nx - 1 )
write ( *, '(2x,g14.6,2x,g14.6)' ) s, u(i,nt+1)
end do
return
end
subroutine mc_test ( )
c*********************************************************************72
c
cc MC_TEST tests MC.
c
c Licensing:
c
c This code is distributed under the GNU LGPL license.
c
c Modified:
c
c 17 February 2012
c
c Author:
c
c John Burkardt
c
implicit none
double precision conf(2)
double precision e
integer m
double precision r
double precision s0
integer seed
double precision sigma
double precision t1
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'MC_TEST:'
write ( *, '(a)' ) ' A demonstration of the Monte Carlo method'
write ( *, '(a)' ) ' for option valuation.'
s0 = 2.0D+00
e = 1.0D+00
r = 0.05D+00
sigma = 0.25D+00
t1 = 3.0D+00
m = 1000000
seed = 123456789
write ( *, '(a)' ) ' '
write ( *, '(a, g14.6)' )
& ' The asset price at time 0, S0 = ', s0
write ( *, '(a, g14.6)' )
& ' The exercise price E = ', e
write ( *, '(a, g14.6)' )
& ' The interest rate R = ', r
write ( *, '(a, g14.6)' )
& ' The asset volatility SIGMA = ', sigma
write ( *, '(a, g14.6)' )
& ' The expiry date T1 = ', t1
write ( *, '(a, i8)' )
& ' The number of simulations M = ', m
call mc ( s0, e, r, sigma, t1, m, seed, conf )
write ( *, '(a)' ) ' '
write ( *, '(a,g14.6,a,g14.6,a)' )
& ' The confidence interval is [', conf(1), ',', conf(2), '].'
return
end