From 002de001c916475b353245a608255ed4a5770ebe Mon Sep 17 00:00:00 2001 From: Octavian Mircea Sebe Date: Sun, 14 Jul 2024 05:26:45 +0300 Subject: [PATCH] proved first chunk of subst induction --- 12-proof-system-p.mm1 | 17 +++++++++--- nominal/core.mm1 | 4 +-- nominal/lambda.mm1 | 60 +++++++++++++++++++++++++++++++------------ 3 files changed, 59 insertions(+), 22 deletions(-) diff --git a/12-proof-system-p.mm1 b/12-proof-system-p.mm1 index e6fb5cd..d5622fe 100644 --- a/12-proof-system-p.mm1 +++ b/12-proof-system-p.mm1 @@ -262,6 +262,10 @@ theorem imp_forall_fresh {x: EVar} (phi1 phi2: Pattern x) (freshness_phi1: $ _eF $ (phi1 -> forall x phi2) <-> forall x (phi1 -> phi2) $ = '(con2b @ bitr (cong_of_equiv_exists @ con3b @ imeq2i notnot) @ and_exists_fresh freshness_phi1); +theorem imp_forall {x: EVar} (phi1: Pattern) (phi2: Pattern x): + $ (phi1 -> forall x phi2) <-> forall x (phi1 -> phi2) $ = + '(imp_forall_fresh eFresh_disjoint); + theorem lemma_46 (phi: Pattern) {box: SVar} (ctx: Pattern box) (p : $ phi $): @@ -1047,6 +1051,9 @@ do { (def (func_subst_alt x phi1 func_phi2) '( anr imp_exists_disjoint (mp (exists_framing @ syl anr ,(func_subst_explicit_helper x phi1)) ,func_phi2) )) + (def (func_subst_alt_thm_sorted x phi1) '( + syl (rsyl (exists_framing imancom) (anr imp_exists_disjoint)) @ exists_framing @ anim2 @ syl anr ,(func_subst_explicit_helper x phi1) + )) (def (func_subst_thm func_phi2 x phi1) '( exists_generalization_disjoint (mp (com12 @ syl anl ,(func_subst_explicit_helper x (nth 4 @ get-decl phi1))) ,phi1) ,func_phi2 )) @@ -1235,8 +1242,10 @@ theorem subset_mem_disjoint_lemma {x: EVar} (phi: Pattern) (psi: Pattern x) $ (phi C= psi) -> forall x ((x in phi) -> x in psi) $ = '(anr (imp_forall_fresh @ eFresh_subset eFresh_disjoint freshness_psi) @ univ_gene @ com12 @ rsyl eVar_in_subset_forward @ rsyl subset_trans @ imim2 eVar_in_subset_reverse); -theorem in_exists_lemma {x: EVar} (phi: Pattern x): $ (x in exists x (eVar x /\ phi)) -> x in phi $ = '(); +do { + (def (forall_imp_climb n) (iterate n (fn (pf) '(syl (anl imp_forall) @ imim2 ,pf)) 'id)) -theorem in_exists_to_forall_domain {x: EVar} (pred: Pattern x) (phi: Pattern): - $ (phi C= exists x (eVar x /\ pred)) -> forall x (x in phi -> x in pred)$ = - '(rsyl (subset_mem_disjoint_lemma eFresh_exists_same_var) @ forall_framing @ imim2 in_exists_lemma); + (def (inst_foralls n) (if {n = 0} 'id + '(rsyl (rsyl ,(inst_foralls {n - 1}) ,(forall_imp_climb {n - 1})) var_subst_same_var) + )) +}; \ No newline at end of file diff --git a/nominal/core.mm1 b/nominal/core.mm1 index f9633cb..a525340 100644 --- a/nominal/core.mm1 +++ b/nominal/core.mm1 @@ -93,7 +93,7 @@ axiom F2 (alpha: Pattern) {a b: EVar}: $ is_atom_sort alpha $ > $ (is_atom a alpha) -> (is_atom b alpha) -> - ((b in freshness a) <-> (eVar a != eVar b)) $; + (((eVar a) != (eVar b)) <-> (fresh_for (eVar a) (eVar b))) $; axiom F3 (alpha1 alpha2: Pattern) {a b: EVar}: $ is_atom_sort alpha1 $ > $ is_atom_sort alpha2 $ > @@ -115,7 +115,7 @@ axiom A1 (alpha tau: Pattern) {a b: EVar} (phi rho: Pattern a b): (is_of_sort rho tau) -> (((abstraction (eVar a) phi) == (abstraction (eVar b) rho)) <-> ((eVar a == eVar b) /\ (phi == rho)) \/ - ((rho C= freshness a) /\ ((swap a b phi) == rho))) $; + ((fresh_for (eVar a) rho) /\ ((swap a b phi) == rho))) $; axiom A2 (alpha tau: Pattern) {x a y: EVar}: $ is_atom_sort alpha $ > $ is_nominal_sort tau $ > diff --git a/nominal/lambda.mm1 b/nominal/lambda.mm1 index c7db84c..7cae4a6 100644 --- a/nominal/lambda.mm1 +++ b/nominal/lambda.mm1 @@ -172,53 +172,81 @@ theorem induction_principle (exp_pred exp_suff_fresh: Pattern) term subst_sym: Symbol; -def subst {a: EVar} (phi1 phi2: Pattern a): Pattern a = $ (sym subst_sym) @@ (eVar a) @@ phi1 @@ phi2 $; +def subst (a phi1 phi2: Pattern): Pattern = $ (sym subst_sym) @@ a @@ phi1 @@ phi2 $; axiom function_subst: $ ,(is_function '(sym subst_sym) '[Var Exp Exp] 'Exp) $; axiom subst_same_var {a: EVar} (plug: Pattern a): $ (is_var (eVar a)) -> (is_exp plug) -> - ((subst a (lc_var (eVar a)) plug) == plug) $; + ((subst (eVar a) (lc_var (eVar a)) plug) == plug) $; axiom subst_diff_var {a b: EVar} (plug: Pattern a b): $ (is_var (eVar a)) -> (is_var (eVar b)) -> ((eVar a) != (eVar b)) -> (is_exp plug) -> - ((subst b (lc_var (eVar a)) plug) == (lc_var (eVar a))) $; -axiom subst_app {a: EVar} (plug phi1 phi2: Pattern a): - $ (is_var (eVar a)) -> - (is_exp plug) -> - (is_exp phi1) -> + ((subst (eVar b) (lc_var (eVar a)) plug) == (lc_var (eVar a))) $; +axiom subst_app {a: EVar} (phi1 phi2 plug: Pattern a): + $ (is_exp phi1) -> (is_exp phi2) -> - ((subst a (lc_app phi1 phi2) plug) == (lc_app (subst a phi1 plug) (subst a phi2 plug))) $; + (is_var (eVar a)) -> + (is_exp plug) -> + ((subst (eVar a) (lc_app phi1 phi2) plug) == (lc_app (subst (eVar a) phi1 plug) (subst (eVar a) phi2 plug))) $; axiom subst_lam {a b: EVar} (plug phi: Pattern a b): $ (is_var (eVar a)) -> (is_var (eVar b)) -> (is_exp plug) -> (is_exp phi) -> (fresh_for (eVar a) plug) -> - ((subst b (lc_lam_a a phi) plug) == (lc_lam_a a (subst b phi plug))) $; + ((subst (eVar b) (lc_lam_a a phi) plug) == (lc_lam_a a (subst (eVar b) phi plug))) $; -def subst_induction_pred (a b phi plug1 plug2: Pattern) = $ (subst b (subst a phi plug1) plug2) == (subst a (subst b phi plug2) (subst b plug1 plug2)) $; -def satisfying_exps {.x: EVar} (a b plug1 plug2: Pattern) = $ exists x ((eVar x) /\ subst_induction_pred a b (eVar x) plug1 plug2) $; +def subst_induction_pred (a b phi plug1 plug2: Pattern): Pattern = $ (subst b (subst a phi plug1) plug2) == (subst a (subst b phi plug2) (subst b plug1 plug2)) $; +def satisfying_exps {.x: EVar} (a b plug1 plug2: Pattern): Pattern = $ s_exists Exp x ((eVar x) /\ subst_induction_pred a b (eVar x) plug1 plug2) $; -theorem subst_induction_app_lemma {x y: EVar} (a b phi1 plug1 plug2: Pattern) +theorem subst_induction_app_lemma {x y: EVar} (a b plug1 plug2: Pattern) (a_var: $ is_sorted_func Var a $) (b_var: $ is_sorted_func Var b $) (plug1_exp: $ is_exp plug1 $) (plug2_exp: $ is_exp plug2 $) (a_fresh: $ fresh_for a phi3 $): - $ (subst_induction_pred a b x plug1 plug2 /\ subst_induction_pred a b y plug1 plug2) -> subst_induction_pred a b (lc_app x y) plug1 plug2 $ = + $ (is_exp (eVar x) /\ subst_induction_pred a b (eVar x) plug1 plug2) /\ (is_exp (eVar y) /\ subst_induction_pred a b (eVar y) plug1 plug2) -> subst_induction_pred a b (lc_app (eVar x) (eVar y)) plug1 plug2 $ = '(); -theorem subst_induction_app (a b phi1 plug1 plug2: Pattern) +theorem subst_induction_app (a b plug1 plug2: Pattern) (a_var: $ is_sorted_func Var a $) (b_var: $ is_sorted_func Var b $) (plug1_exp: $ is_exp plug1 $) (plug2_exp: $ is_exp plug2 $) (a_fresh: $ fresh_for a phi3 $): $ (lc_app (satisfying_exps a b plug1 plug2) (satisfying_exps a b plug1 plug2)) C= (satisfying_exps a b plug1 plug2) $ = - '(); + (named '(imp_to_subset @ + rsyl (anl ,(ex_appCtx_subst 'appCtxLRVar)) @ + exists_generalization_disjoint @ + rsyl (anl ,(ex_appCtx_subst 'appCtxRVar)) @ + exists_generalization_disjoint @ + rsyl ,(appCtx_floor_commute_b_subst 'appCtxLRVar) @ + rsyl (anim1 @ iand id id) @ + rsyl (anl anass) @ + rsyl (anim2 @ + rsyl (anim2 ,(appCtx_floor_commute_subst 'appCtxLRVar)) @ + rsyl (anim2 ancom) @ + rsyl (anr anass) @ + rsyl (anim2 @ + rsyl ,(appCtx_floor_commute_b_subst 'appCtxRVar) @ + rsyl (anim1 @ iand id id) @ + rsyl (anl anass) @ + anim2 @ + rsyl (anim2 ,(appCtx_floor_commute_subst 'appCtxRVar)) @ + rsyl (anim2 ancom) @ + anr anass + ) @ + rsyl (anl anlass) @ + anim2 @ + anr anass) @ + rsyl (anr anass) @ + rsyl (anim2 @ anim1 @ subst_induction_app_lemma a_var b_var plug1_exp plug2_exp a_fresh) @ + rsyl (anim2 @ ancom) @ + rsyl (anim1 @ curry @ mp ,(inst_foralls 2) function_lc_app) @ + curry ,(func_subst_alt_thm_sorted 'x $(eVar x) /\ ((app (app _ (app (app _ (eVar x)) _)) _) == (app (app _ (app (app _ (eVar x)) _)) _))$))); theorem subst_induction (a b phi1 plug1 plug2: Pattern) @@ -229,7 +257,7 @@ theorem subst_induction (a b phi1 plug1 plug2: Pattern) (plug2_exp: $ is_exp plug2 $) (a_fresh: $ fresh_for a phi3 $): $ (subst b (subst a phi1 plug1) plug2) == (subst a (subst b phi1 plug2) (subst b plug1 plug2)) $ = - '(induction_principle); + '();