-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path01-propositional.mm1
430 lines (403 loc) · 28.2 KB
/
01-propositional.mm1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import "00-matching-logic.mm0";
import "_automation.mm1";
theorem a1i (h: $ b $): $ a -> b $ = '(prop_1 h);
theorem a2i (h: $ a -> b -> c $): $ (a -> b) -> (a -> c) $ = '(prop_2 h);
theorem mpd (h1: $ a -> b $) (h2: $ a -> b -> c $): $ a -> c $ = '(prop_2 h2 h1);
theorem mpi (h1: $ b $) (h2: $ a -> b -> c $): $ a -> c $ = '(mpd (a1i h1) h2);
theorem id: $ a -> a $ = '(mpd (! prop_1 _ a) prop_1);
theorem idd: $ a -> b -> b $ = '(a1i id);
theorem syl (h1: $ b -> c $) (h2: $ a -> b $): $ a -> c $ = '(mpd h2 (a1i h1));
theorem rsyl (h1: $ a -> b $) (h2: $ b -> c $): $ a -> c $ = '(syl h2 h1);
theorem a1d (h: $ a -> b $): $ a -> c -> b $ = '(syl prop_1 h);
theorem a2d (h: $ a -> b -> c -> d $): $ a -> (b -> c) -> (b -> d) $ = '(syl prop_2 h);
theorem a3d (h: $ a -> ~b -> ~c $): $ a -> c -> b $ = '(syl prop_3 h);
theorem sylc (h: $ b -> c -> d $) (h1: $ a -> b $) (h2: $ a -> c $): $ a -> d $ = '(mpd h2 @ syl h h1);
theorem syld (h1: $ a -> b -> c $) (h2: $ a -> c -> d $): $ a -> b -> d $ = '(mpd h1 @ a2d @ a1d h2);
theorem syl5 (h1: $ b -> c $) (h2: $ a -> c -> d $): $ a -> b -> d $ = '(syld (a1i h1) h2);
theorem syl6 (h1: $ c -> d $) (h2: $ a -> b -> c $): $ a -> b -> d $ = '(syld h2 (a1i h1));
theorem imim2: $ (b -> c) -> (a -> b) -> (a -> c) $ = '(a2d prop_1);
theorem imim2i (h: $ b -> c $): $ (a -> b) -> (a -> c) $ = '(imim2 h);
theorem imim2d (h: $ a -> c -> d $): $ a -> (b -> c) -> (b -> d) $ = '(syl imim2 h);
theorem absurd: $ ~a -> a -> b $ = '(a3d prop_1);
theorem com12 (h: $ a -> b -> c $): $ b -> a -> c $ = '(syl (a2i h) prop_1);
theorem mpcom: $ a -> (a -> b) -> b $ = '(com12 id);
theorem com23 (h: $ a -> b -> c -> d $): $ a -> c -> b -> d $ = '(syl (com12 @ imim2d mpcom) h);
theorem eimd (h1: $ a -> b $) (h2: $ a -> c -> d $): $ a -> (b -> c) -> d $ = '(syld (rsyl h1 mpcom) h2);
theorem absurdr: $ a -> ~a -> b $ = '(com12 absurd);
theorem imim1: $ (a -> b) -> (b -> c) -> (a -> c) $ = '(com12 imim2);
theorem imim1i (h: $ a -> b $): $ (b -> c) -> (a -> c) $ = '(imim1 h);
theorem imim1d (h: $ a -> b -> c $): $ a -> (c -> d) -> (b -> d) $ = '(syl imim1 h);
theorem imimd (h1: $ a -> b -> c $) (h2: $ a -> d -> e $):
$ a -> (c -> d) -> (b -> e) $ = '(syld (imim1d h1) (imim2d h2));
theorem imim: $ (a -> b) -> (c -> d) -> (b -> c) -> (a -> d) $ = '(syl5 imim2 (imim2d imim1));
theorem imidm: $ (a -> a -> b) -> a -> b $ = '(a2i mpcom);
theorem eim: $ a -> (b -> c) -> (a -> b) -> c $ = '(imim1d mpcom);
theorem contra: $ (~a -> a) -> a $ = '(imidm (a3d (a2i absurd)));
theorem dne: $ ~~a -> a $ = '(syl contra absurd);
theorem inot: $ (a -> ~a) -> ~a $ = '(syl contra (imim1 dne));
theorem con2: $ (a -> ~b) -> (b -> ~a) $ = '(a3d (syl5 dne id));
theorem notnot1: $ a -> ~~a $ = '(con2 id);
theorem con3: $ (a -> b) -> (~b -> ~a) $ = '(syl con2 (imim2i notnot1));
theorem con1: $ (~a -> b) -> (~b -> a) $ = '(a3d (imim2i notnot1));
theorem con4: $ (~a -> ~b) -> (b -> a) $ = '(syl (imim1 notnot1) con1);
theorem cases (h1: $ a -> b $) (h2: $ ~a -> b $): $ b $ = '(contra @ syl h1 @ con1 h2);
theorem casesd (h1: $ a -> b -> c $) (h2: $ a -> ~b -> c $): $ a -> c $ =
'(cases (com12 h1) (com12 h2));
theorem con1d (h: $ a -> ~b -> c $): $ a -> ~c -> b $ = '(syl con1 h);
theorem con2d (h: $ a -> b -> ~c $): $ a -> c -> ~b $ = '(syl con2 h);
theorem con3d (h: $ a -> b -> c $): $ a -> ~c -> ~b $ = '(syl con3 h);
theorem con4d (h: $ a -> ~b -> ~c $): $ a -> c -> b $ = '(syl prop_3 h);
theorem mt (h1: $ b -> a $) (h2: $ ~a $): $ ~b $ = '(con3 h1 h2);
theorem mt2 (h1: $ b -> ~a $) (h2: $ a $): $ ~b $ = '(con2 h1 h2);
theorem mtd (h1: $ a -> ~b $) (h2: $ a -> c -> b $): $ a -> ~c $ = '(mpd h1 (con3d h2));
theorem mti (h1: $ ~b $) (h2: $ a -> c -> b $): $ a -> ~c $ = '(mtd (a1i h1) h2);
theorem mt2d (h1: $ a -> c $) (h2: $ a -> b -> ~c $): $ a -> ~b $ = '(sylc con2 h2 h1);
theorem anl: $ a /\ b -> a $ = '(con1 absurd);
theorem anr: $ a /\ b -> b $ = '(con1 prop_1);
theorem anli (h: $ a /\ b $): $ a $ = '(anl h);
theorem anri (h: $ a /\ b $): $ b $ = '(anr h);
theorem ian: $ a -> b -> a /\ b $ = '(con2d mpcom);
theorem iand (h1: $ a -> b $) (h2: $ a -> c $): $ a -> b /\ c $ = '(sylc ian h1 h2);
theorem anld (h: $ a -> b /\ c $): $ a -> b $ = '(syl anl h);
theorem anrd (h: $ a -> b /\ c $): $ a -> c $ = '(syl anr h);
theorem iani (h1: $ a $) (h2: $ b $): $ a /\ b $ = '(ian h1 h2);
theorem anwl (h: $ a -> c $): $ a /\ b -> c $ = '(syl h anl);
theorem anwr (h: $ b -> c $): $ a /\ b -> c $ = '(syl h anr);
theorem anll: $ a /\ b /\ c -> a $ = '(anwl anl);
theorem anlr: $ a /\ b /\ c -> b $ = '(anwl anr);
theorem anrl: $ a /\ (b /\ c) -> b $ = '(anwr anl);
theorem anrr: $ a /\ (b /\ c) -> c $ = '(anwr anr);
theorem anwll (h: $ a -> d $): $ a /\ b /\ c -> d $ = '(anwl (anwl h));
theorem anw3l (h: $ a -> e $): $ a /\ b /\ c /\ d -> e $ = '(anwll (anwl h));
theorem anw4l (h: $ a -> f $): $ a /\ b /\ c /\ d /\ e -> f $ = '(anw3l (anwl h));
theorem anw5l (h: $ a -> g $): $ a /\ b /\ c /\ d /\ e /\ f -> g $ = '(anw4l (anwl h));
theorem anw6l (x: $ a -> h $): $ a /\ b /\ c /\ d /\ e /\ f /\ g -> h $ = '(anw5l (anwl x));
theorem anw7l (x: $ a -> i $): $ a /\ b /\ c /\ d /\ e /\ f /\ g /\ h -> i $ = '(anw6l (anwl x));
theorem anllr: $ a /\ b /\ c /\ d -> b $ = '(anwll anr);
theorem an3l: $ a /\ b /\ c /\ d -> a $ = '(anwll anl);
theorem an3lr: $ a /\ b /\ c /\ d /\ e -> b $ = '(anwl anllr);
theorem an4l: $ a /\ b /\ c /\ d /\ e -> a $ = '(anwl an3l); -- TODO: automate these
theorem an4lr: $ a /\ b /\ c /\ d /\ e /\ f -> b $ = '(anwl an3lr);
theorem an5l: $ a /\ b /\ c /\ d /\ e /\ f -> a $ = '(anwl an4l);
theorem an5lr: $ a /\ b /\ c /\ d /\ e /\ f /\ g -> b $ = '(anwl an4lr);
theorem an6l: $ a /\ b /\ c /\ d /\ e /\ f /\ g -> a $ = '(anwl an5l);
theorem an6lr: $ a /\ b /\ c /\ d /\ e /\ f /\ g /\ h -> b $ = '(anwl an5lr);
theorem an7l: $ a /\ b /\ c /\ d /\ e /\ f /\ g /\ h -> a $ = '(anwl an6l);
theorem an7lr: $ a /\ b /\ c /\ d /\ e /\ f /\ g /\ h /\ i -> b $ = '(anwl an6lr);
theorem an8l: $ a /\ b /\ c /\ d /\ e /\ f /\ g /\ h /\ i -> a $ = '(anwl an7l);
theorem an8lr: $ a /\ b /\ c /\ d /\ e /\ f /\ g /\ h /\ i /\ j -> b $ = '(anwl an7lr);
theorem an9l: $ a /\ b /\ c /\ d /\ e /\ f /\ g /\ h /\ i /\ j -> a $ = '(anwl an8l);
theorem an9lr: $ a /\ b /\ c /\ d /\ e /\ f /\ g /\ h /\ i /\ j /\ k -> b $ = '(anwl an8lr);
theorem curry (h: $ a -> b -> c $): $ a /\ b -> c $ = '(sylc h anl anr);
theorem exp (h: $ a /\ b -> c $): $ a -> b -> c $ = '(syl6 h ian);
theorem impcom (h: $ a -> b -> c $): $ b /\ a -> c $ = '(curry (com12 h));
theorem expcom (h: $ a /\ b -> c $): $ b -> a -> c $ = '(com12 (exp h));
theorem syla (h1: $ (b -> c) -> d $) (h2: $ a /\ b -> c $): $ a -> d $ = '(syl h1 @ exp h2);
theorem sylan (h: $ b /\ c -> d $) (h1: $ a -> b $) (h2: $ a -> c $):
$ a -> d $ = '(syl h @ iand h1 h2);
theorem animd (h1: $ a -> b -> c $) (h2: $ a -> d -> e $): $ a -> b /\ d -> c /\ e $ =
'(exp (iand (curry (syl5 anl h1)) (curry (syl5 anr h2))));
theorem anim1d (h: $ a -> b -> c $): $ a -> b /\ d -> c /\ d $ = '(animd h idd);
theorem anim2d (h: $ a -> c -> d $): $ a -> b /\ c -> b /\ d $ = '(animd idd h);
theorem anim1: $ (a -> b) -> a /\ c -> b /\ c $ = '(anim1d id);
theorem anim2: $ (b -> c) -> a /\ b -> a /\ c $ = '(anim2d id);
theorem anim: $ (a -> b) -> (c -> d) -> a /\ c -> b /\ d $ =
'(exp @ syld (anim1d anl) (anim2d anr));
theorem anim2a: $ (a -> b -> c) -> (a /\ b -> a /\ c) $ =
'(exp @ iand anrl @ mpd anrr @ mpd anrl anl);
theorem ancom: $ a /\ b -> b /\ a $ = '(iand anr anl);
theorem anrasss (h: $ a /\ b /\ c -> d $): $ a /\ c /\ b -> d $ =
'(sylan h (iand anll anr) anlr);
theorem anim1a: $ (a -> b -> c) -> (b /\ a -> c /\ a) $ =
'(syl6 ancom @ syl5 ancom anim2a);
theorem casesda (h1: $ a /\ b -> c $) (h2: $ a /\ ~b -> c $): $ a -> c $ =
'(casesd (exp h1) (exp h2));
theorem inotda (h: $ a /\ b -> ~b $): $ a -> ~b $ = '(syla inot h);
theorem mpand (h1: $ a -> b $) (h2: $ a /\ b -> c $): $ a -> c $ = '(mpd h1 (exp h2));
theorem mtand (h1: $ a -> ~b $) (h2: $ a /\ c -> b $): $ a -> ~c $ = '(mtd h1 (exp h2));
theorem mtani (h1: $ ~b $) (h2: $ a /\ c -> b $): $ a -> ~c $ = '(mtand (a1i h1) h2);
theorem bi1: $ (a <-> b) -> a -> b $ = 'anl;
theorem bi1i (h: $ a <-> b $): $ a -> b $ = '(bi1 h);
theorem bi1d (h: $ a -> (b <-> c) $): $ a -> b -> c $ = '(syl bi1 h);
theorem bi1a (h: $ a -> (b <-> c) $): $ a /\ b -> c $ = '(curry @ bi1d h);
theorem bi2: $ (a <-> b) -> b -> a $ = 'anr;
theorem bi2i (h: $ a <-> b $): $ b -> a $ = '(bi2 h);
theorem bi2d (h: $ a -> (b <-> c) $): $ a -> c -> b $ = '(syl bi2 h);
theorem bi2a (h: $ a -> (b <-> c) $): $ a /\ c -> b $ = '(curry @ bi2d h);
theorem ibii (h1: $ a -> b $) (h2: $ b -> a $): $ a <-> b $ = '(iani h1 h2);
theorem ibid (h1: $ a -> b -> c $) (h2: $ a -> c -> b $): $ a -> (b <-> c) $ = '(iand h1 h2);
theorem ibida (h1: $ a /\ b -> c $) (h2: $ a /\ c -> b $): $ a -> (b <-> c) $ = '(ibid (exp h1) (exp h2));
theorem biid: $ a <-> a $ = '(ibii id id);
theorem biidd: $ a -> (b <-> b) $ = '(a1i biid);
theorem mpbi (h1: $ a <-> b $) (h2: $ a $): $ b $ = '(bi1i h1 h2);
theorem mpbir (h1: $ b <-> a $) (h2: $ a $): $ b $ = '(bi2i h1 h2);
theorem mpbid (h1: $ a -> (b <-> c) $) (h2: $ a -> b $): $ a -> c $ = '(mpd h2 (bi1d h1));
theorem mpbird (h1: $ a -> (c <-> b) $) (h2: $ a -> b $): $ a -> c $ = '(mpd h2 (bi2d h1));
theorem mpbii (h1: $ b $) (h2: $ a -> (b <-> c) $): $ a -> c $ = '(mpbid h2 (a1i h1));
theorem mpbiri (h1: $ b $) (h2: $ a -> (c <-> b) $): $ a -> c $ = '(mpbird h2 (a1i h1));
theorem mtbi (h1: $ a <-> b $) (h2: $ ~a $): $ ~b $ = '(mt (bi2 h1) h2);
theorem mtbir (h1: $ b <-> a $) (h2: $ ~a $): $ ~b $ = '(mt (bi1 h1) h2);
theorem mtbid (h1: $ a -> (b <-> c) $) (h2: $ a -> ~b $): $ a -> ~c $ = '(mtd h2 (bi2d h1));
theorem mtbird (h1: $ a -> (c <-> b) $) (h2: $ a -> ~b $): $ a -> ~c $ = '(mtd h2 (bi1d h1));
theorem con1b: $ (~a <-> b) -> (~b <-> a) $ = '(ibid (con1d bi1) (con2d bi2));
theorem con2b: $ (a <-> ~b) -> (b <-> ~a) $ = '(ibid (con2d bi1) (con1d bi2));
theorem con3b: $ (a <-> b) -> (~a <-> ~b) $ = '(ibid (con3d bi2) (con3d bi1));
theorem con4b: $ (~a <-> ~b) -> (a <-> b) $ = '(ibid (con4d bi2) (con4d bi1));
theorem con1bb: $ (~a <-> b) <-> (~b <-> a) $ = '(ibii con1b con1b);
theorem con2bb: $ (a <-> ~b) <-> (b <-> ~a) $ = '(ibii con2b con2b);
theorem con3bb: $ (a <-> b) <-> (~a <-> ~b) $ = '(ibii con3b con4b);
theorem con1bi: $ (~a -> b) <-> (~b -> a) $ = '(ibii con1 con1);
theorem con2bi: $ (a -> ~b) <-> (b -> ~a) $ = '(ibii con2 con2);
theorem con3bi: $ (a -> b) <-> (~b -> ~a) $ = '(ibii con3 prop_3);
theorem notnot: $ a <-> ~~a $ = '(ibii notnot1 dne);
theorem bithd (h1: $ a -> b $) (h2: $ a -> c $): $ a -> (b <-> c) $ = '(ibid (a1d h2) (a1d h1));
theorem binthd (h1: $ a -> ~b $) (h2: $ a -> ~c $): $ a -> (b <-> c) $ = '(syl con4b @ bithd h1 h2);
theorem bith: $ a -> b -> (a <-> b) $ = '(exp @ bithd anl anr);
theorem binth: $ ~a -> ~b -> (a <-> b) $ = '(exp @ binthd anl anr);
theorem bicom: $ (a <-> b) -> (b <-> a) $ = '(ibid bi2 bi1);
theorem bicomb: $ (a <-> b) <-> (b <-> a) $ = '(ibii bicom bicom);
theorem bicomd (h: $ a -> (b <-> c) $): $ a -> (c <-> b) $ = '(syl bicom h);
theorem bitrd (h1: $ a -> (b <-> c) $) (h2: $ a -> (c <-> d) $): $ a -> (b <-> d) $ =
'(ibid (syld (bi1d h1) (bi1d h2)) (syld (bi2d h2) (bi2d h1)));
theorem bitr2d (h1: $ a -> (b <-> c) $) (h2: $ a -> (c <-> d) $): $ a -> (d <-> b) $ = '(bicomd (bitrd h1 h2));
theorem bitr3d (h1: $ a -> (c <-> b) $) (h2: $ a -> (c <-> d) $): $ a -> (b <-> d) $ = '(bitrd (bicomd h1) h2);
theorem bitr4d (h1: $ a -> (b <-> c) $) (h2: $ a -> (d <-> c) $): $ a -> (b <-> d) $ = '(bitrd h1 (bicomd h2));
theorem bitr: $ (a <-> b) -> (b <-> c) -> (a <-> c) $ = '(exp (bitrd anl anr));
theorem bitr2: $ (a <-> b) -> (b <-> c) -> (c <-> a) $ = '(exp (bitr2d anl anr));
theorem bitr3: $ (b <-> a) -> (b <-> c) -> (a <-> c) $ = '(exp (bitr3d anl anr));
theorem bitr4: $ (a <-> b) -> (c <-> b) -> (a <-> c) $ = '(exp (bitr4d anl anr));
theorem bisylr: $ (c <-> b) -> (a <-> b) -> (a <-> c) $ = '(rsyl bicom @ com23 id bitr);
theorem sylib (h1: $ b <-> c $) (h2: $ a -> b $): $ a -> c $ = '(syl (bi1i h1) h2);
theorem sylibr (h1: $ c <-> b $) (h2: $ a -> b $): $ a -> c $ = '(syl (bi2i h1) h2);
theorem sylbi (h1: $ a <-> b $) (h2: $ b -> c $): $ a -> c $ = '(syl h2 (bi1i h1));
theorem sylbir (h1: $ b <-> a $) (h2: $ b -> c $): $ a -> c $ = '(syl h2 (bi2i h1));
theorem syl5bb (h1: $ b <-> c $) (h2: $ a -> (c <-> d) $): $ a -> (b <-> d) $ = '(bitrd (a1i h1) h2);
theorem syl5bbr (h1: $ c <-> b $) (h2: $ a -> (c <-> d) $): $ a -> (b <-> d) $ = '(syl5bb (bicom h1) h2);
theorem syl6bb (h1: $ c <-> d $) (h2: $ a -> (b <-> c) $): $ a -> (b <-> d) $ = '(bitrd h2 (a1i h1));
theorem syl6bbr (h1: $ d <-> c $) (h2: $ a -> (b <-> c) $): $ a -> (b <-> d) $ = '(syl6bb (bicom h1) h2);
theorem syl5bi (h1: $ b <-> c $) (h2: $ a -> c -> d $): $ a -> b -> d $ = '(syl5 (bi1 h1) h2);
theorem syl5bir (h1: $ c <-> b $) (h2: $ a -> c -> d $): $ a -> b -> d $ = '(syl5bi (bicom h1) h2);
theorem syl6ib (h1: $ c <-> d $) (h2: $ a -> b -> c $): $ a -> b -> d $ = '(syl6 (bi1 h1) h2);
theorem syl6ibr (h1: $ d <-> c $) (h2: $ a -> b -> c $): $ a -> b -> d $ = '(syl6 (bi2 h1) h2);
theorem syl5ibrcom (h1: $ c -> (b <-> d) $) (h2: $ a -> d $): $ a -> c -> b $ = '(com12 @ syl5 h2 (bi2d h1));
theorem sylbid (h1: $ a -> (b <-> c) $) (h2: $ a -> c -> d $): $ a -> b -> d $ = '(syld (bi1d h1) h2);
theorem sylibd (h1: $ a -> b -> c $) (h2: $ a -> (c <-> d) $): $ a -> b -> d $ = '(syld h1 (bi1d h2));
theorem sylbird (h1: $ a -> (c <-> b) $) (h2: $ a -> c -> d $): $ a -> b -> d $ = '(syld (bi2d h1) h2);
theorem sylibrd (h1: $ a -> b -> c $) (h2: $ a -> (d <-> c) $): $ a -> b -> d $ = '(syld h1 (bi2d h2));
theorem bitr3g (h1: $ b <-> d $) (h2: $ c <-> e $) (h: $ a -> (b <-> c) $):
$ a -> (d <-> e) $ = '(syl5bb (bicom h1) @ syl6bb h2 h);
theorem bitr4g (h1: $ d <-> b $) (h2: $ e <-> c $) (h: $ a -> (b <-> c) $):
$ a -> (d <-> e) $ = '(syl5bb h1 @ syl6bb (bicom h2) h);
theorem bitr3gi (h1: $ a <-> c $) (h2: $ b <-> d $) (h: $ a <-> b $): $ c <-> d $ = '(bitr3 h1 @ bitr h h2);
theorem bitr4gi (h1: $ c <-> a $) (h2: $ d <-> b $) (h: $ a <-> b $): $ c <-> d $ = '(bitr h1 @ bitr4 h h2);
theorem impbi (h: $ a -> (b <-> c) $): $ a /\ b -> c $ = '(curry @ bi1d h);
theorem impbir (h: $ a -> (c <-> b) $): $ a /\ b -> c $ = '(curry @ bi2d h);
theorem ancomb: $ a /\ b <-> b /\ a $ = '(ibii ancom ancom);
theorem anass: $ a /\ b /\ c <-> a /\ (b /\ c) $ =
'(ibii (iand anll (anim1 anr)) (iand (anim2 anl) anrr));
theorem bian2a: $ (a -> b) -> (a /\ b <-> a) $ = '(ibid (a1i anl) (a2i ian));
theorem bian1a: $ (b -> a) -> (a /\ b <-> b) $ = '(syl5bb ancomb bian2a);
theorem bian1: $ a -> (a /\ b <-> b) $ = '(syl bian1a prop_1);
theorem bian2: $ b -> (a /\ b <-> a) $ = '(syl bian2a prop_1);
theorem bibi1: $ a -> ((a <-> b) <-> b) $ = '(ibid (com12 bi1) bith);
theorem bibi2: $ b -> ((a <-> b) <-> a) $ = '(syl5bb bicomb bibi1);
theorem noteq: $ (a <-> b) -> (~a <-> ~b) $ = 'con3b;
theorem noteqi (h: $ a <-> b $): $ ~a <-> ~b $ = '(noteq h);
theorem noteqd (h: $ a -> (b <-> c) $): $ a -> (~b <-> ~c) $ = '(syl noteq h);
theorem imeqd
(h1: $ a -> (b <-> c) $) (h2: $ a -> (d <-> e) $): $ a -> (b -> d <-> c -> e) $ =
'(ibid (imimd (bi2d h1) (bi1d h2)) (imimd (bi1d h1) (bi2d h2)));
theorem bibin1: $ ~a -> ((a <-> b) <-> ~b) $ = '(ibid (com12 @ bi1d noteq) binth);
theorem bibin2: $ ~b -> ((a <-> b) <-> ~a) $ = '(syl5bb bicomb bibin1);
theorem imeq1d (h: $ a -> (b <-> c) $): $ a -> (b -> d <-> c -> d) $ = '(imeqd h biidd);
theorem imeq2d (h: $ a -> (c <-> d) $): $ a -> (b -> c <-> b -> d) $ = '(imeqd biidd h);
theorem imeq1i (h: $ a <-> b $): $ a -> c <-> b -> c $ = '(imeq1d id h);
theorem imeq2i (h: $ b <-> c $): $ a -> b <-> a -> c $ = '(imeq2d id h);
theorem imeqi (h1: $ a <-> b $) (h2: $ c <-> d $): $ a -> c <-> b -> d $ = '(bitr (imeq1i h1) (imeq2i h2));
theorem aneqd
(h1: $ a -> (b <-> c) $) (h2: $ a -> (d <-> e) $): $ a -> (b /\ d <-> c /\ e) $ =
'(ibid (animd (bi1d h1) (bi1d h2)) (animd (bi2d h1) (bi2d h2)));
theorem imeq2a: $ (a -> (b <-> c)) -> (a -> b <-> a -> c) $ = '(ibid (a2d @ imim2i bi1) (a2d @ imim2i bi2));
theorem imeq1a: $ (~c -> (a <-> b)) -> (a -> c <-> b -> c) $ = '(bitr4g con3bi con3bi @ syl imeq2a @ imim2i noteq);
theorem imeq2da (h: $ G /\ a -> (b <-> c) $): $ G -> (a -> b <-> a -> c) $ = '(syl imeq2a @ exp h);
theorem aneq1d (h: $ a -> (b <-> c) $): $ a -> (b /\ d <-> c /\ d) $ = '(aneqd h biidd);
theorem aneq2d (h: $ a -> (c <-> d) $): $ a -> (b /\ c <-> b /\ d) $ = '(aneqd biidd h);
theorem aneq: $ (a <-> b) -> (c <-> d) -> (a /\ c <-> b /\ d) $ = '(exp @ aneqd anl anr);
theorem aneq1i (h: $ a <-> b $): $ a /\ c <-> b /\ c $ = '(aneq1d id h);
theorem aneq2i (h: $ b <-> c $): $ a /\ b <-> a /\ c $ = '(aneq2d id h);
theorem aneq2a: $ (a -> (b <-> c)) -> (a /\ b <-> a /\ c) $ =
'(ibid (syl anim2a @ imim2i bi1) (syl anim2a @ imim2i bi2));
theorem aneq1a: $ (c -> (a <-> b)) -> (a /\ c <-> b /\ c) $ = '(syl5bb ancomb @ syl6bb ancomb aneq2a);
theorem aneq1da (h: $ G /\ c -> (a <-> b) $): $ G -> (a /\ c <-> b /\ c) $ = '(syl aneq1a @ exp h);
theorem aneq2da (h: $ G /\ a -> (b <-> c) $): $ G -> (a /\ b <-> a /\ c) $ = '(syl aneq2a @ exp h);
theorem anlass: $ a /\ (b /\ c) <-> b /\ (a /\ c) $ =
'(bitr3 anass @ bitr (aneq1i ancomb) anass);
theorem anrass: $ a /\ b /\ c <-> a /\ c /\ b $ =
'(bitr anass @ bitr4 (aneq2i ancomb) anass);
theorem an4: $ (a /\ b) /\ (c /\ d) <-> (a /\ c) /\ (b /\ d) $ =
'(bitr4 anass @ bitr4 anass @ aneq2i anlass);
theorem anroti (h: $ a -> b /\ d $): $ a /\ c -> b /\ c /\ d $ = '(sylib anrass @ anim1 h);
theorem anrotri (h: $ b /\ d -> a $): $ b /\ c /\ d -> a /\ c $ = '(sylbi anrass @ anim1 h);
theorem bian11i (h: $ a <-> b /\ c $): $ a /\ d <-> b /\ (c /\ d) $ = '(bitr (aneq1i h) anass);
theorem bian21i (h: $ a <-> b /\ c $): $ a /\ d <-> (b /\ d) /\ c $ = '(bitr (aneq1i h) anrass);
theorem bian12i (h: $ a <-> b /\ c $): $ d /\ a <-> b /\ (d /\ c) $ = '(bitr (aneq2i h) anlass);
theorem bian22i (h: $ a <-> b /\ c $): $ d /\ a <-> (d /\ b) /\ c $ = '(bitr4 (aneq2i h) anass);
theorem bian11d (h: $ G -> (a <-> b /\ c) $): $ G -> (a /\ d <-> b /\ (c /\ d)) $ = '(syl6bb anass (aneq1d h));
theorem bian21d (h: $ G -> (a <-> b /\ c) $): $ G -> (a /\ d <-> (b /\ d) /\ c) $ = '(syl6bb anrass (aneq1d h));
theorem bian12d (h: $ G -> (a <-> b /\ c) $): $ G -> (d /\ a <-> b /\ (d /\ c)) $ = '(syl6bb anlass (aneq2d h));
theorem bian22d (h: $ G -> (a <-> b /\ c) $): $ G -> (d /\ a <-> (d /\ b) /\ c) $ = '(syl6bbr anass (aneq2d h));
theorem bian11da (h: $ G /\ d -> (a <-> b /\ c) $): $ G -> (a /\ d <-> b /\ (c /\ d)) $ = '(syl6bb anass (aneq1da h));
theorem bian21da (h: $ G /\ d -> (a <-> b /\ c) $): $ G -> (a /\ d <-> (b /\ d) /\ c) $ = '(syl6bb anrass (aneq1da h));
theorem bian12da (h: $ G /\ d -> (a <-> b /\ c) $): $ G -> (d /\ a <-> b /\ (d /\ c)) $ = '(syl6bb anlass (aneq2da h));
theorem bian22da (h: $ G /\ d -> (a <-> b /\ c) $): $ G -> (d /\ a <-> (d /\ b) /\ c) $ = '(syl6bbr anass (aneq2da h));
theorem anidm: $ a /\ a <-> a $ = '(ibii anl (iand id id));
theorem anandi: $ a /\ (b /\ c) <-> (a /\ b) /\ (a /\ c) $ = '(bitr3 (aneq1i anidm) an4);
theorem anandir: $ (a /\ b) /\ c <-> (a /\ c) /\ (b /\ c) $ = '(bitr3 (aneq2i anidm) an4);
theorem imandi: $ (a -> b /\ c) <-> (a -> b) /\ (a -> c) $ =
'(ibii (iand (imim2i anl) (imim2i anr)) (com12 @ animd mpcom mpcom));
theorem imancom: $ a /\ (b -> c) -> b -> a /\ c $ = '(com12 @ anim2d mpcom);
theorem rbida (h1: $ a /\ c -> b $) (h2: $ a /\ d -> b $)
(h: $ a /\ b -> (c <-> d) $): $ a -> (c <-> d) $ =
'(bitr3d (syla bian2a h1) @ bitrd (syla aneq1a h) (syla bian2a h2));
theorem rbid (h1: $ b -> a $) (h2: $ c -> a $) (h: $ a -> (b <-> c) $): $ b <-> c $ =
'(bitr3 (bian2a h1) @ bitr (aneq1a h) (bian2a h2));
theorem bieqd
(h1: $ a -> (b <-> c) $) (h2: $ a -> (d <-> e) $): $ a -> ((b <-> d) <-> (c <-> e)) $ =
'(aneqd (imeqd h1 h2) (imeqd h2 h1));
theorem bieq1d (h: $ a -> (b <-> c) $): $ a -> ((b <-> d) <-> (c <-> d)) $ = '(bieqd h biidd);
theorem bieq2d (h: $ a -> (c <-> d) $): $ a -> ((b <-> c) <-> (b <-> d)) $ = '(bieqd biidd h);
theorem bieq: $ (a <-> b) -> (c <-> d) -> ((a <-> c) <-> (b <-> d)) $ = '(exp (bieqd anl anr));
theorem bieq1: $ (a <-> b) -> ((a <-> c) <-> (b <-> c)) $ = '(bieq1d id);
theorem bieq2: $ (b <-> c) -> ((a <-> b) <-> (a <-> c)) $ = '(bieq2d id);
theorem impexp: $ (a /\ b -> c) <-> (a -> b -> c) $ =
'(ibii (exp @ exp @ mpd (anim1 anr) anll) (exp @ mpd anrr @ mpd anrl anl));
theorem impd (h: $ a -> b -> c -> d $): $ a -> b /\ c -> d $ = '(sylibr impexp h);
theorem expd (h: $ a -> b /\ c -> d $): $ a -> b -> c -> d $ = '(sylib impexp h);
theorem com12b: $ (a -> b -> c) <-> (b -> a -> c) $ = '(ibii (com23 id) (com23 id));
theorem orl: $ a -> a \/ b $ = 'absurdr;
theorem orr: $ b -> a \/ b $ = 'prop_1;
theorem eori (h1: $ a -> c $) (h2: $ b -> c $): $ a \/ b -> c $ =
'(casesd (a1i h1) (imim2i h2));
theorem eord (h1: $ a -> b -> d $) (h2: $ a -> c -> d $):
$ a -> b \/ c -> d $ = '(com12 (eori (com12 h1) (com12 h2)));
theorem eorda (h1: $ a /\ b -> d $) (h2: $ a /\ c -> d $):
$ a -> b \/ c -> d $ = '(eord (exp h1) (exp h2));
theorem orld (h: $ a -> b $): $ a -> b \/ c $ = '(syl orl h);
theorem orrd (h: $ a -> c $): $ a -> b \/ c $ = '(syl orr h);
theorem eor: $ (a -> c) -> (b -> c) -> a \/ b -> c $ = '(exp (eord anl anr));
theorem orimd (h1: $ a -> b -> c $) (h2: $ a -> d -> e $): $ a -> b \/ d -> c \/ e $ =
'(eord (syl6 orl h1) (syl6 orr h2));
theorem orim1d (h: $ a -> b -> c $): $ a -> b \/ d -> c \/ d $ = '(orimd h idd);
theorem orim2d (h: $ a -> c -> d $): $ a -> b \/ c -> b \/ d $ = '(orimd idd h);
theorem orim1: $ (a -> b) -> a \/ c -> b \/ c $ = '(orim1d id);
theorem orim2: $ (b -> c) -> a \/ b -> a \/ c $ = '(orim2d id);
theorem oreq1d: $ (a <-> b) -> (a \/ c <-> b \/ c) $ = '(anim orim1 orim1);
theorem oreq2d: $ (a <-> b) -> (c \/ a <-> c \/ b) $ = '(anim orim2 orim2);
theorem oreq1i (h: $ a <-> b $): $ a \/ c <-> b \/ c $ = '(oreq1d h);
theorem oreq2i (h: $ b <-> c $): $ a \/ b <-> a \/ c $ = '(oreq2d h);
theorem orim: $ (a -> b) -> (c -> d) -> a \/ c -> b \/ d $ = '(exp @ syld (anwl orim1) (anwr orim2));
theorem oreq: $ (a <-> b) -> (c <-> d) -> (a \/ c <-> b \/ d) $ = '(syl5 oreq2d @ syl bitr oreq1d);
theorem oreqi (h1: $ a <-> b $) (h2: $ c <-> d $): $ a \/ c <-> b \/ d $ = '(bitr (oreq1i h1) (oreq2i h2));
theorem orcom: $ a \/ b -> b \/ a $ = 'con1;
theorem orcomb: $ a \/ b <-> b \/ a $ = '(ibii orcom orcom);
theorem or12: $ a \/ (b \/ c) <-> b \/ (a \/ c) $ = '(bitr3 impexp @ bitr (imeq1i ancomb) impexp);
theorem orass: $ a \/ b \/ c <-> a \/ (b \/ c) $ = '(bitr orcomb @ bitr or12 @ imeq2i orcomb);
-- theorem or4: $ (a \/ b) \/ (c \/ d) <-> (a \/ c) \/ (b \/ d) $ = '(bitr4 orass @ bitr4 orass @ oreq2 or12);
theorem oridm: $ a \/ a <-> a $ = '(ibii (eor id id) orl);
theorem notan2: $ ~(a /\ b) <-> a -> ~b $ = '(bicom notnot);
theorem notan: $ ~(a /\ b) <-> (~a \/ ~b) $ = '(bitr notan2 (imeq1i notnot));
theorem notor: $ ~(a \/ b) <-> (~a /\ ~b) $ = '(con1b (bitr4 notan (oreqi notnot notnot)));
theorem iman: $ a -> b <-> ~(a /\ ~b) $ = '(bitr4 (imeq2i notnot) notan2);
theorem imor: $ ((a \/ b) -> c) <-> ((a -> c) /\ (b -> c)) $ =
'(ibii (iand (imim1i orl) (imim1i orr)) (curry eor));
theorem andi: $ a /\ (b \/ c) <-> a /\ b \/ a /\ c $ =
'(ibii (curry @ orimd ian ian) @ eor (anim2 orl) (anim2 orr));
theorem andir: $ (a \/ b) /\ c <-> a /\ c \/ b /\ c $ =
'(bitr ancomb @ bitr andi @ oreqi ancomb ancomb);
theorem ordi: $ a \/ (b /\ c) <-> (a \/ b) /\ (a \/ c) $ =
'(ibii (iand (orim2 anl) (orim2 anr)) @ com12 @ animd mpcom mpcom);
theorem ordir: $ (a /\ b) \/ c <-> (a \/ c) /\ (b \/ c) $ =
'(bitr orcomb @ bitr ordi @ aneq orcomb orcomb);
theorem oreq2a: $ (~a -> (b <-> c)) -> (a \/ b <-> a \/ c) $ = 'imeq2a;
theorem oreq1a: $ (~c -> (a <-> b)) -> (a \/ c <-> b \/ c) $ = '(syl5bb orcomb @ syl6bb orcomb oreq2a);
theorem biim1a: $ (~a -> b) -> (a -> b <-> b) $ = '(ibid (exp @ casesd anr anl) (a1i prop_1));
theorem biim2a: $ (b -> ~a) -> (a -> b <-> ~a) $ = '(ibid (exp @ syl inot @ curry imim2) (a1i absurd));
theorem bior1a: $ (a -> b) -> (a \/ b <-> b) $ = '(sylbi (imeq1i notnot) biim1a);
theorem bior2a: $ (b -> a) -> (a \/ b <-> a) $ = '(syl5bb orcomb bior1a);
theorem biim1: $ a -> (a -> b <-> b) $ = '(syl biim1a absurdr);
theorem biim2: $ ~b -> (a -> b <-> ~a) $ = '(syl biim2a absurd);
theorem bior1: $ ~a -> (a \/ b <-> b) $ = '(syl bior1a absurd);
theorem bior2: $ ~b -> (a \/ b <-> a) $ = '(syl bior2a absurd);
theorem em: $ p \/ ~p $ = 'id;
theorem emr: $ ~p \/ p $ = '(orcom em);
theorem ian2: $ a -> b -> b /\ a $ = '(exp ancom);
theorem absurdum: $ bot -> phi $ = '(prop_3 idd);
theorem taut: $ top $ = 'absurdum;
theorem imp_top: $ phi -> top $ = '(a1i taut);
theorem top_or: $ top \/ phi $ = '(syl absurdum dne);
theorem bot_or: $ (bot \/ a) -> a $ = '(mpcom taut);
theorem top_and: $ phi -> top /\ phi $ = '(com12 bot_or);
theorem imp_to_or (h: $(~a \/ b) -> c$): $(a -> b) -> c$ = '(rsyl con3 (rsyl orcom h)) ;
theorem not_distr_or: $ ~(a \/ b) <-> ~a /\ ~b $ = 'notor;
theorem and_distr: $ a /\ (b /\ c) <-> (a /\ b) /\ (a /\ c) $ =
'(ibii
( rsyl (anim1 @ anr anidm)
@ rsyl (anl anass)
@ rsyl (anim2 @ anl anlass)
(anr anass))
(rsyl (rsyl (anl anass) anr) (anl anlass)));
theorem appl: $ (a /\ (a -> b)) -> b $ = '(con1 @ anl com12b @ con3d mpcom);
--- analogs to anl and anr; Would prefer: $~(a -> b) <-> (a /\ ~b)$
theorem neg_imp_left: $ ~(a -> b) -> a $ = '(con1 absurd);
theorem neg_imp_right: $ ~(a -> b) -> ~b $ = '(con3 prop_1);
theorem neg_imp_wl(h: $ a -> c $): $ ~(a -> b) -> c $ = '(syl h neg_imp_left);
theorem neg_imp_wr(h: $ ~b -> c $): $ ~(a -> b) -> c $ = '(syl h neg_imp_right);
theorem or_imp_xor_and: $ a \/ b -> (~(a <-> b) \/ (a /\ b)) $ =
'( eori (! cases b _ (expcom orr)
@ expcom @ syl orl @ com12 @ curry @ com23 @ impd @ a2i @ a1i absurdr
)
(! cases a _ (exp orr)
@ expcom @ syl orl @ com12 @ curry @ com12 @ com23 @ impd @ a2i @ a1i absurdr
) );
theorem xor_and_imp_or: $ (~(a <-> b) \/ (a /\ b)) -> a \/ b $ =
'(eori (syl (imp_to_or (eori (neg_imp_wl orl) (neg_imp_wl orr))) dne)
(anwl orl)
);
theorem lemma_51: $ ((a /\ ~b) \/ (b /\ ~a)) <-> ~(a <-> b) $ = '(iani
(eori (con3 @ rsyl anl @ imim2i notnot1)
(rsyl ancom @ con3 @ rsyl anr con3))
(con1 @ rsyl (anl not_distr_or) @ anim (anr iman) (anr iman)));
theorem lemma_in_in_reverse_helper: $ (~a \/ b) -> (~a \/ (b /\ a)) $ =
'(syl (orim2 @ anim2 dne) @ syl anr bian1a);
theorem lemma_60_helper_1: $ a -> (a /\ ~b) \/ (a /\ b) $ =
'(syl (anl andi) @ iand id @ a1i emr);
theorem lemma_60_helper_2: $ a -> ~b \/ (a /\ b) $ =
'(syl (imim1i dne) ian);
theorem bisquare (h1: $a <-> b$) (h2: $d <-> c$) (h3: $b <-> c$): $a <-> d$ =
'(bitr h1 @ bisylr h2 h3);
theorem Fprop: $ (a -> b) -> (c -> d) -> (b -> d -> e) -> (a -> c -> e) $ =
'(syl (anl impexp) @ com12 @ imim2d @ curry @ imim2d imim1);
theorem an_top_bi_l: $ phi /\ top <-> phi $ = '(ibii anl @ syl ancom top_and);
theorem an_top_bi_r: $ top /\ phi <-> phi $ = '(ibii anr top_and);
theorem an_bot_bi_l: $ phi /\ bot <-> bot $ = '(ibii anr absurdum);
theorem an_bot_bi_r: $ bot /\ phi <-> bot $ = '(ibii anl absurdum);
theorem or_bot_bi_l: $ phi \/ bot <-> phi $ = '(ibii (eori id absurdum) orl);
theorem or_bot_bi_r: $ bot \/ phi <-> phi $ = '(ibii (eori absurdum id) orr);
theorem or_or_not_an: $ a \/ b <-> a \/ (~a /\ b) $ =
'(bitr (bitr (bicom an_top_bi_r) @ aneq1i @ ibii (a1i em) imp_top) @ bicom ordi);
theorem absurd_an: $ ~a /\ a <-> bot $ = '(ibii (impcom mpcom) absurdum);
theorem absurd_an_r: $ a /\ ~a <-> bot $ = '(ibii (curry mpcom) absurdum);
theorem imp_or_split: $ (a -> b \/ c) -> (a -> b) \/ (a -> c) $ =
'(rsyl (anr impexp) @ orim (imim2 dne) prop_1);
theorem iand3 (h1: $ a -> b $) (h2: $ a -> c $) (h3: $ a -> d $): $ a -> b /\ c /\ d $ =
'(iand (iand h1 h2) h3);
theorem iand4 (h1: $ a -> b $) (h2: $ a -> c $) (h3: $ a -> d $) (h4: $ a -> e $): $ a -> b /\ c /\ d /\ e $ =
'(iand (iand (iand h1 h2) h3) h4);
theorem iand5 (h1: $ a -> b $) (h2: $ a -> c $) (h3: $ a -> d $) (h4: $ a -> e $) (h5: $ a -> f $): $ a -> b /\ c /\ d /\ e /\ f $ =
'(iand (iand (iand (iand h1 h2) h3) h4) h5);
theorem iand6 (h1: $ a -> b $) (h2: $ a -> c $) (h3: $ a -> d $) (h4: $ a -> e $) (h5: $ a -> f $) (h6: $ a -> g $): $ a -> b /\ c /\ d /\ e /\ f /\ g $ =
'(iand (iand (iand (iand (iand h1 h2) h3) h4) h5) h6);
theorem iand7 (h1: $ a -> b $) (h2: $ a -> c $) (h3: $ a -> d $) (h4: $ a -> e $) (h5: $ a -> f $) (h6: $ a -> g $) (h7: $ a -> h $): $ a -> b /\ c /\ d /\ e /\ f /\ g /\ h $ =
'(iand (iand (iand (iand (iand (iand h1 h2) h3) h4) h5) h6) h7);
theorem imp_or_extract: $ (a -> b) \/ (a -> c) <-> (a -> (b \/ c)) $ =
'(ibii (eori (imim2 orl) (imim2 orr)) imp_or_split);