-
Notifications
You must be signed in to change notification settings - Fork 12
/
demo_video.py
530 lines (437 loc) · 19.1 KB
/
demo_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import argparse
import cv2
import math
import time
import numpy as np
import util
from config_reader_colab import config_reader_colab
from scipy.ndimage.filters import gaussian_filter
from model import get_testing_model
import pickle
import itertools
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import glob
import os
from tqdm import tqdm
import pandas as pd
import skvideo
import skvideo.io
# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
[1, 16], [16, 18], [3, 17], [6, 18]]
# the middle joints heatmap correpondence
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
[55, 56], [37, 38], [45, 46]]
# visualize
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0],
[0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255],
[85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
def process (input_image, params, model_params):
oriImg = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
oriImg = input_image
multiplier = [x * model_params['boxsize'] / oriImg.shape[0] for x in params['scale_search']]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, model_params['stride'],
model_params['padValue'])
input_img = np.transpose(np.float32(imageToTest_padded[:,:,:,np.newaxis]), (3,0,1,2)) # required shape (1, width, height, channels)
output_blobs = model.predict(input_img)
# extract outputs, resize, and remove padding
heatmap = np.squeeze(output_blobs[1]) # output 1 is heatmaps
heatmap = cv2.resize(heatmap, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3],
:]
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
paf = np.squeeze(output_blobs[0]) # output 0 is PAFs
paf = cv2.resize(paf, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
heatmap_avg = heatmap_avg + heatmap / len(multiplier)
paf_avg = paf_avg + paf / len(multiplier)
all_peaks = []
peak_counter = 0
for part in range(18):
map_ori = heatmap_avg[:, :, part]
map = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(map.shape)
map_left[1:, :] = map[:-1, :]
map_right = np.zeros(map.shape)
map_right[:-1, :] = map[1:, :]
map_up = np.zeros(map.shape)
map_up[:, 1:] = map[:, :-1]
map_down = np.zeros(map.shape)
map_down[:, :-1] = map[:, 1:]
peaks_binary = np.logical_and.reduce(
(map >= map_left, map >= map_right, map >= map_up, map >= map_down, map > params['thre1']))
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (id[i],) for i in range(len(id))]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
connection_all = []
special_k = []
mid_num = 10
for k in range(len(mapIdx)):
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
candA = all_peaks[limbSeq[k][0] - 1]
candB = all_peaks[limbSeq[k][1] - 1]
nA = len(candA)
nB = len(candB)
indexA, indexB = limbSeq[k]
if (nA != 0 and nB != 0):
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
# failure case when 2 body parts overlaps
if norm == 0:
continue
vec = np.divide(vec, norm)
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
np.linspace(candA[i][1], candB[j][1], num=mid_num)))
vec_x = np.array(
[score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
for I in range(len(startend))])
vec_y = np.array(
[score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
for I in range(len(startend))])
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
0.5 * oriImg.shape[0] / norm - 1, 0)
criterion1 = len(np.nonzero(score_midpts > params['thre2'])[0]) > 0.8 * len(
score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append([i, j, score_with_dist_prior,
score_with_dist_prior + candA[i][2] + candB[j][2]])
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
connection = np.zeros((0, 5))
for c in range(len(connection_candidate)):
i, j, s = connection_candidate[c][0:3]
if (i not in connection[:, 3] and j not in connection[:, 4]):
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
if (len(connection) >= min(nA, nB)):
break
connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
# last number in each row is the total parts number of that person
# the second last number in each row is the score of the overall configuration
subset = -1 * np.ones((0, 20))
candidate = np.array([item for sublist in all_peaks for item in sublist])
for k in range(len(mapIdx)):
if k not in special_k:
partAs = connection_all[k][:, 0]
partBs = connection_all[k][:, 1]
indexA, indexB = np.array(limbSeq[k]) - 1
for i in range(len(connection_all[k])): # = 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): # 1:size(subset,1):
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if (subset[j][indexB] != partBs[i]):
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
if len(np.nonzero(membership == 2)[0]) == 0: # merge
subset[j1][:-2] += (subset[j2][:-2] + 1)
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
else: # as like found == 1
subset[j1][indexB] = partBs[i]
subset[j1][-1] += 1
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
# if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + \
connection_all[k][i][2]
subset = np.vstack([subset, row])
# delete some rows of subset which has few parts occur
deleteIdx = [];
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0)
#canvas = cv2.imread(input_image) # B,G,R order
canvas = input_image # cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
# print(all_peaks)
for i in range(18):
for j in range(len(all_peaks[i])):
cv2.circle(canvas, all_peaks[i][j][0:2], 4, colors[i], thickness=-1)
stickwidth = 4
for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i]) - 1]
if -1 in index:
continue
cur_canvas = canvas.copy()
Y = candidate[index.astype(int), 0]
X = candidate[index.astype(int), 1]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0,
360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
# return canvas
return {'peaks':all_peaks,'canvas':canvas,'limbs_subset':subset,'limbs_candidate':candidate}
# # read video fn
# def write_video_to_image(vidpath,vidname, start, stop):
# os.chdir(vidpath)
# vidcap = cv2.VideoCapture(vidname)
# success,image = vidcap.read()
# count = 0; image_mat=[];
# while success:
# success,image = vidcap.read()
# if count <= stop and count >= start:
# image_mat.append(image)
# if cv2.waitKey(10) == 27:
# break
# count += 1
# return image_mat
# def write_video_to_image2(vidpath,vidname, start, stop):
# videogen = skvideo.io.vreader(vidpath+vidname)
# image_mat=[];count=0;
# for image in videogen:
# if count <= stop and count >= start:
# image_mat.append(image)
# if count > stop:
# break
# count += 1
# return image_mat
# def write_video_to_image3(vidpath, start, stop):
# videogen = skvideo.io.vreader(vidpath)
# new_videogen = itertools.islice(videogen, start, stop, 1)
# image_mat=[];
# for image in new_videogen:
# image_mat.append(image)
# return image_mat
# # write mat of frames to file
# def write_video_from_image(image_with_skel,outputvidname,outputpath):
# os.chdir(outputpath)
# frame_width = int(len(image_with_skel[0][0]))
# frame_height = int(len(image_with_skel[0]))
# # Define the codec and create VideoWriter object.The output is stored in 'outpy.avi' file.
# out = cv2.VideoWriter(outputvidname,cv2.VideoWriter_fourcc('M','J','P','G'), 10, (frame_width,frame_height))
# for i in range(len(image_with_skel)):
# # Display the resulting frame
# plt.imshow(image_with_skel[i], cmap=plt.cm.Greys_r)
# # Write the frame into the file
# out.write(np.asarray(image_with_skel[i]))
# plt.close()
# out.release()
# cv2.destroyAllWindows()
class VideoProcessor(object):
'''
Base class for a video processing unit,
implementation is required for video loading and saving
'''
def __init__(self,fname='',sname='', nframes = -1, fps = 30):
self.fname = fname
self.sname = sname
self.nframes = nframes
self.h = 0
self.w = 0
self.sh = 0
self.sw = 0
self.FPS = fps
self.nc = 3
self.i = 0
try:
if self.fname != '':
self.vid = self.get_video()
self.get_info()
if self.sname != '':
self.sh = self.h
self.sw = self.w
self.svid = self.create_video()
except Exception as ex:
print('Error: %s', ex)
def load_frame(self):
try:
frame = self._read_frame()
self.i += 1
return frame
except Exception as ex:
print('Error: %s', ex)
def height(self):
return self.h
def width(self):
return self.w
def fps(self):
return self.FPS
def counter(self):
return self.i
def frame_count(self):
return self.nframes
def get_video(self):
'''
implement your own
'''
pass
def get_info(self):
'''
implement your own
'''
pass
def create_video(self):
'''
implement your own
'''
pass
def _read_frame(self):
'''
implement your own
'''
pass
def save_frame(self,frame):
'''
implement your own
'''
pass
def close(self):
'''
implement your own
'''
pass
class VideoProcessorSK(VideoProcessor):
'''
Video Processor using skvideo.io
requires sk-video in python,
and ffmpeg installed in the operating system
'''
def __init__(self, *args, **kwargs):
super(VideoProcessorSK, self).__init__(*args, **kwargs)
def get_video(self):
return skvideo.io.FFmpegReader(self.fname)
def get_info(self):
infos = skvideo.io.ffprobe(self.fname)['video']
self.h = int(infos['@height'])
self.w = int(infos['@width'])
self.FPS = eval(infos['@avg_frame_rate'])
vshape = self.vid.getShape()
all_frames = vshape[0]
self.nc = vshape[3]
if self.nframes == -1 or self.nframes>all_frames:
self.nframes = all_frames
def create_video(self):
return skvideo.io.FFmpegWriter(self.sname, outputdict={'-r':str(self.FPS)})
def _read_frame(self):
return self.vid._readFrame()
def save_frame(self,frame):
self.svid.writeFrame(frame)
def close(self):
self.svid.close()
self.vid.close()
# if __name__ == '__main__':
# parser = argparse.ArgumentParser()
# parser.add_argument('--image', type=str, required=True, help='input image')
# parser.add_argument('--output', type=str, default='result.png', help='output image')
# parser.add_argument('--model', type=str, default='model/keras/model.h5', help='path to the weights file')
# args = parser.parse_args()
# input_image = args.image
# output = args.output
# keras_weights_file = args.model
input_path = '/content/Open-Pose-Keras/sample_videos'
keras_weights_file='/content/Open-Pose-Keras/model/keras/model.h5'
#videos = glob.glob(input_path+'/*')
videos = np.sort([fn for fn in glob.glob(input_path+'/*') if "Labeled" not in fn])
print('filenames:')
print(videos)
print('start processing...')
# load model
# authors of original model don't use
# vgg normalization (subtracting mean) on input images
model = get_testing_model(np_branch1=38, np_branch2=19, stages = 6)
model.load_weights(keras_weights_file)
# # load config
params, model_params = config_reader_colab()
# os.chdir(input_path)
for ivid,vid in enumerate(videos):
tic = time.time()
df = pd.DataFrame()
print(vid)
vidname = os.path.basename(vid)
vname = vidname.split('.')[0]
print('vidname')
print(vidname)
print('vname')
print(vname)
if os.path.isfile(os.path.join(input_path,vname + '_openposeLabeled.mp4')):
print("Labeled video already created.")
else:
# break into frames
clip = VideoProcessorSK(fname = os.path.join(input_path,vidname),sname = os.path.join(input_path,vname + '_openposeLabeled.mp4'))# input name, output name
ny = clip.height()
nx = clip.width()
fps = clip.fps()
nframes = clip.frame_count()
duration = nframes/fps
print("Duration of video [s]: ", duration, ", recorded with ", fps,
"fps!")
print("Overall # of frames: ", nframes, "with frame dimensions: ",
ny,nx)
print("Generating frames")
for index in tqdm(range(nframes)):
input_image = clip.load_frame()
# cv2.imwrite('input_image.jpg', cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB))
# input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
# input_image = vid
# print(input_image)
# run on each frame
# generate image with body parts
try:
output_dict = process(input_image, params, model_params) # {'peaks':all_peaks,'canvas':canvas,'limbs_subset':subset,'limbs_candidate':candidate}
# print('output_dict 1')
# print(output_dict)
# print('@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@')
frame = output_dict['canvas']
del output_dict['canvas']
output_dict.update({'video':vname, 'frame':index})
# print('output_dict 2')
# print(output_dict)
# print('@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@')
# convert to df
output_df = pd.DataFrame(pd.Series(output_dict)).transpose()
# print('@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@')
# print('output_df')
# print(output_df)
df = df.append(output_df)
clip.save_frame(frame)
#save in json
except:
print('error during pose estimation')
# combine into video
clip.close()
df.to_pickle(os.path.join(input_path,vname)+'.pkl')
toc = time.time()
print ('processing time is %.5f' % (toc - tic))
os.chdir('../')