-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathofficehome_train.py
179 lines (144 loc) · 7.65 KB
/
officehome_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import tqdm
import torch
import shutil
import argparse
from eval import get_acc
from torch import nn, optim
from model import ResNetCls
from loss import energy_ranking
import torch.distributed as dist
import torch.utils.data.distributed
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from data_transform import get_transform
from officehome_data import get_dg_dataset
def main(opt):
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_ids
if opt.local_rank == 0 and opt.build_tensorboard:
shutil.rmtree(opt.logdir, True)
writer = SummaryWriter(logdir=opt.logdir)
opt.build_tensorboard = False
dist.init_process_group(backend='nccl', init_method=opt.init_method, world_size=opt.n_gpus)
batch_size = opt.batch_size
device = torch.device('cuda', opt.local_rank if torch.cuda.is_available() else 'cpu')
print('Using device:{}'.format(device))
train_set, val_set, test_set = get_dg_dataset(train_transform, val_transform, source_domains=opt.source, target_domains=opt.target)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set, shuffle=True)
train_loader = DataLoader(train_set, batch_size=batch_size, sampler=train_sampler, num_workers=36)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_set, shuffle=False)
val_loader = DataLoader(val_set, batch_size=batch_size, sampler=val_sampler, num_workers=24)
test_sampler = torch.utils.data.distributed.DistributedSampler(test_set, shuffle=False)
test_loader = DataLoader(test_set, batch_size=batch_size, sampler=test_sampler, num_workers=24)
model = ResNetCls(depth=opt.depth, num_classes=opt.num_classes)
if opt.local_rank == 0:
try:
model.load_state_dict(torch.load(opt.checkpoint, map_location='cpu'), strict=True)
except:
print('Training from scratch...')
model = torch.nn.parallel.DistributedDataParallel(model.to(device), device_ids=[opt.local_rank], output_device=opt.local_rank, broadcast_buffers=False)
optimizer = optim.AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=opt.lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opt.poer_set, gamma=0.5)
criterion = nn.CrossEntropyLoss()
for epoch in range(opt.epoch):
train_loader.sampler.set_epoch(epoch)
# only tqdm in rank 0
if opt.local_rank == 0:
data_loader = tqdm.tqdm(train_loader)
else:
data_loader = train_loader
train_loss, val_loss, test_loss = 0, 0, 0
train_acc, val_acc, test_acc = 0, 0, 0
model.train()
for x, y, d in data_loader:
x, y, d = x.float().to(device), y.long().to(device), d.long().to(device)
feats, predict = model(x)
vanilla_loss = criterion(predict, y)
if opt.poer:
poer_loss = energy_ranking(feats, y, d)
poer_weight = 0.1 if epoch < opt.poer_set else 0.2
loss = vanilla_loss + poer_weight * poer_loss
else:
loss = vanilla_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predict_cls = torch.max(predict, dim=-1)
train_acc += get_acc(predict_cls, y)
# update learning rate
scheduler.step()
if opt.local_rank == 0 and epoch % 2 == 0:
model.eval()
with torch.no_grad():
for x, y, d in tqdm.tqdm(val_loader):
x, y, d = x.float().to(device), y.long().to(device), d.long().to(device)
feats, predict = model(x)
vanilla_loss = criterion(predict, y)
if opt.poer:
poer_loss = energy_ranking(feats, y, d)
poer_weight = 0.1 if epoch < opt.poer_set else 0.2
loss = vanilla_loss + poer_weight * poer_loss
else:
loss = vanilla_loss
val_loss += loss.item()
_, predict_cls = torch.max(predict, dim=-1)
val_acc += get_acc(predict_cls, y)
for x, y, d in tqdm.tqdm(test_loader):
x, y, d = x.float().to(device), y.long().to(device), d.long().to(device)
feats, predict = model(x)
loss = criterion(predict, y)
test_loss += loss.item()
_, predict_cls = torch.max(predict, dim=-1)
test_acc += get_acc(predict_cls, y)
train_loss = train_loss / len(train_loader)
train_acc = train_acc / len(train_loader)
val_loss = val_loss / len(val_loader)
val_acc = val_acc / len(val_loader)
test_loss = test_loss / len(test_loader)
test_acc = test_acc / len(test_loader)
print('EPOCH : %03d | Train Loss : %.4f | Train Acc : %.4f | Val Loss : %.4f | Val Acc : %.4f | '
'Test Loss : %.4f | Test Acc : %.4f'
% (epoch, train_loss, train_acc, val_loss, val_acc, test_loss, test_acc))
compare_acc = val_acc - val_loss
if compare_acc >= opt.best_acc and epoch > opt.min_epoch:
opt.best_acc = compare_acc
model_name = 'epoch_%d_val_%.3f_test_%.3f.pth' % (epoch, val_acc, test_acc)
os.makedirs(opt.save_path, exist_ok=True)
torch.save(model.module.state_dict(), '%s/%s' % (opt.save_path, model_name))
writer.add_scalar('train/loss', train_loss, epoch)
writer.add_scalar('train/acc', train_acc, epoch)
writer.add_scalar('val/loss', val_loss, epoch)
writer.add_scalar('val/acc', val_acc, epoch)
writer.add_scalar('test/loss', test_loss, epoch)
writer.add_scalar('test/acc', test_acc, epoch)
if __name__ == '__main__':
parser = argparse.ArgumentParser('AAAI PoER')
parser.add_argument('--local_rank', type=int, default=-1)
parser.add_argument('--init_method', default='env://')
parser.add_argument('--n_gpus', type=int, default=8)
parser.add_argument('--gpu_ids', type=str, default='0,1,2,3,4,5,6,7')
parser.add_argument('--build_tensorboard', type=bool, default=True)
parser.add_argument('--epoch', type=int, default=3000)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--depth', type=int, default=18)
parser.add_argument('--size', type=int, default=224)
parser.add_argument('--num_classes', type=int, default=65)
parser.add_argument('--poer', type=bool, default=True)
parser.add_argument('--poer_set', type=int, default=70)
parser.add_argument('--min_epoch', type=int, default=10)
parser.add_argument('--best_acc', type=float, default=-10)
parser.add_argument('--source', type=list, default=['Art', 'Clipart', 'Product'])
parser.add_argument('--target', type=list, default=['Real_World'])
parser.add_argument('--logdir', type=str, default='./tensorboard/res18_poer/OfficeHome/Real_World/res18_224_run0')
parser.add_argument('--save_path', type=str, default='./saved_models/res18_poer/OfficeHome/Real_World/res18_224_run0')
parser.add_argument('--checkpoint', type=str, default=None)
opt = parser.parse_args()
if opt.local_rank == 0:
print('opt:', opt)
# data augmentation
train_transform, val_transform = get_transform(size=opt.size)
main(opt)
# using following script to train the model
# python -m torch.distributed.launch --nproc_per_node=8 officehome_train.py --n_gpus=8