forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProductQuantizer.h
178 lines (135 loc) · 5.82 KB
/
ProductQuantizer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
// Copyright 2004-present Facebook. All Rights Reserved.
// -*- c++ -*-
#ifndef FAISS_PRODUCT_QUANTIZER_H
#define FAISS_PRODUCT_QUANTIZER_H
#include <stdint.h>
#include <vector>
#include "Clustering.h"
#include "Heap.h"
namespace faiss {
/** Product Quantizer. Implemented only for METRIC_L2 */
struct ProductQuantizer {
size_t d; ///< size of the input vectors
size_t M; ///< number of subquantizers
size_t nbits; ///< number of bits per quantization index
// values derived from the above
size_t dsub; ///< dimensionality of each subvector
size_t byte_per_idx; ///< nb bytes per code component (1 or 2)
size_t code_size; ///< byte per indexed vector
size_t ksub; ///< number of centroids for each subquantizer
bool verbose; ///< verbose during training?
/// initialization
enum train_type_t {
Train_default,
Train_hot_start, ///< the centroids are already initialized
Train_shared, ///< share dictionary accross PQ segments
Train_hypercube, ///< intialize centroids with nbits-D hypercube
Train_hypercube_pca, ///< intialize centroids with nbits-D hypercube
};
train_type_t train_type;
ClusteringParameters cp; ///< parameters used during clustering
/// if non-NULL, use this index for assignment (should be of size
/// d / M)
Index *assign_index;
/// Centroid table, size M * ksub * dsub
std::vector<float> centroids;
/// return the centroids associated with subvector m
float * get_centroids (size_t m, size_t i) {
return ¢roids [(m * ksub + i) * dsub];
}
const float * get_centroids (size_t m, size_t i) const {
return ¢roids [(m * ksub + i) * dsub];
}
// Train the product quantizer on a set of points. A clustering
// can be set on input to define non-default clustering parameters
void train (int n, const float *x);
ProductQuantizer(size_t d, /* dimensionality of the input vectors */
size_t M, /* number of subquantizers */
size_t nbits); /* number of bit per subvector index */
ProductQuantizer ();
/// compute derived values when d, M and nbits have been set
void set_derived_values ();
/// Define the centroids for subquantizer m
void set_params (const float * centroids, int m);
/// Quantize one vector with the product quantizer
void compute_code (const float * x, uint8_t * code) const ;
/// same as compute_code for several vectors
void compute_codes (const float * x,
uint8_t * codes,
size_t n) const ;
/// decode a vector from a given code (or n vectors if third argument)
void decode (const uint8_t *code, float *x) const;
void decode (const uint8_t *code, float *x, size_t n) const;
/// If we happen to have the distance tables precomputed, this is
/// more efficient to compute the codes.
void compute_code_from_distance_table (const float *tab,
uint8_t *code) const;
/** Compute distance table for one vector.
*
* The distance table for x = [x_0 x_1 .. x_(M-1)] is a M * ksub
* matrix that contains
*
* dis_table (m, j) = || x_m - c_(m, j)||^2
* for m = 0..M-1 and j = 0 .. ksub - 1
*
* where c_(m, j) is the centroid no j of sub-quantizer m.
*
* @param x input vector size d
* @param dis_table output table, size M * ksub
*/
void compute_distance_table (const float * x,
float * dis_table) const;
void compute_inner_prod_table (const float * x,
float * dis_table) const;
/** compute distance table for several vectors
* @param nx nb of input vectors
* @param x input vector size nx * d
* @param dis_table output table, size nx * M * ksub
*/
void compute_distance_tables (size_t nx,
const float * x,
float * dis_tables) const;
void compute_inner_prod_tables (size_t nx,
const float * x,
float * dis_tables) const;
/** perform a search (L2 distance)
* @param x query vectors, size nx * d
* @param nx nb of queries
* @param codes database codes, size ncodes * byte_per_idx
* @param ncodes nb of nb vectors
* @param res heap array to store results (nh == nx)
* @param init_finalize_heap initialize heap (input) and sort (output)?
*/
void search (const float * x,
size_t nx,
const uint8_t * codes,
const size_t ncodes,
float_maxheap_array_t *res,
bool init_finalize_heap = true) const;
/** same as search, but with inner product similarity */
void search_ip (const float * x,
size_t nx,
const uint8_t * codes,
const size_t ncodes,
float_minheap_array_t *res,
bool init_finalize_heap = true) const;
/// Symmetric Distance Table
std::vector<float> sdc_table;
// intitialize the SDC table from the centroids
void compute_sdc_table ();
void search_sdc (const uint8_t * qcodes,
size_t nq,
const uint8_t * bcodes,
const size_t ncodes,
float_maxheap_array_t * res,
bool init_finalize_heap = true) const;
};
} // namespace faiss
#endif