-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmottiprebas.py
440 lines (410 loc) · 21 KB
/
mottiprebas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
## \file mottiprebas.py
## \brief Framework to run PREBAS and Motti under changing climate.
##
## One idea is to use Python as a glue to run PREBAS (i.e. R)
## and Motti (i.e. Pascal binary or shared library) interchangeably.
## The data exchange can be with files and Motti command line parameters.
##
## Examples how to call Motti as binary with python can be found
## for example in some customer projects. Using Pascal shared libraries
## is certainly trickier with no prior experience.
##
## \par Installation
## The following software must be present:
## -# Rprebasso: Download from GitHub and use the instructions in GitHub to install in R.
## -# mottiprebas.py requires that Rprebasso package (i.e. PREBAS) is installed in R.
## -# forClimate: Download from GitHub.
## -# Python: Tested with Python 3.10 but any "close enough" version of Python 3.x should do.
## -# R: Tested with Rstudio Version 2023.09.0+463 (2023.09.0+463) but any "close enough" R distribition should do
## -# Create Python virtual environment:
## -# Install with `pip` rpy2, numpy, openpyxl and pandas packages:
## -# pip install numpy pandas openpyxl rpy2
##
## \par Run mottiprebas.py
## Start the Python virtual environment, go to forClimate directory and type `python mottiprebas.py`
## Currently mottiprebas.py repeats the demonstration in *exampleFunctionDelta.r*
## and saves the results in RData file.
import os
import re
import subprocess
import pathlib
import glob
import argparse
import json
import numpy as np
import pandas as pd
#R_HOME for R for Windows (comment out for Mac and Linux)
#RHOME='/Program Files/R/R-4.3.3/'
RHOME='/dev/MyPrograms/R/R-4.3.3/'
os.environ['R_HOME'] = RHOME
#MottiWB RUNTIME LOCATION including all necessary shared libraries
#Change as needed using '/' for directory path also in Windows
MOTTI_INST_PATH=pathlib.Path("/dev/MyPrograms/MottiWorkBench/Debug/")
os.environ['MOTTI_INST_PATH'] = str(MOTTI_INST_PATH)
#Motti workbench executable name
MOTTIWB='mottiwb.exe'
#Decimal point used in mottiwb depends on locale.
DECIMALMARKER='.'
#Pass environment to mottiwb
environment = os.environ.copy()
# rpy2 is the glue between Python and R
import rpy2
# r is the handler to R interface
from rpy2.robjects import r
# Create R like objects from Python and vice versa.
from rpy2.robjects import numpy2ri
numpy2ri.activate()
# The PREBAS package must be installed in R.
r.library("Rprebasso")
# Function to run PREBAS twice to produce deltas of certain forest characteristics of interest
# dGrowthPrebas is in forClimate project
r.source("Rsrc/dGrowthPrebas.r")
#Convert dataframes to vectors or 2D arrays
from rfunc import convert_r
# Data frame column names
# Site Info Table
# Default values c(1,2,3,160,0,0,20,nLayers,3,413,0.45,0.118)
site_info_cols = ["SiteID","climID","SiteType", "SWinit (initial soil water)", "CWinit (initial crown water)", "SOGinit (initial snow on ground)",\
"Sinit (initial temperature acclimation state)", "NLayers", "NSpecies", "SoilDepth", "Effective field capacity",\
"Permanent wilthing point"]
# Initial Variables (descriptive)
# (nSite x 7 x nLayer array)
# SpeciesID (a number corresponding to the species parameter values of pPRELES columns), Age (years), average height of the layer (H, m),
# average diameter at breast height of the layer (D, cm), basal area of the layer (BA, m2 ha-1), average height of the crown base of the layer (Hc, m).
# 8th column is updated automatically to Ac
init_var_cols = ["SpeciesID","Age(years)","H(m)","D(cm)","BA(m2ha-1)","Hc(m)","Ac(prebas_ex_officio)"]
# Motti results, coefficients from the results
motti_coeffient_cols = ["deltaHGrowth_5YearMean","deltaDGrowth_5YearMean","deltaVGrowth_5YearMean"]
prebas_layers = "PrebasLayers/MottiModelTrees"
#Site type index in Motti stand file
SITE_TYPE_INDEX = 22
def create_new_file_name(file_name:str,year):
"""
Create new output file name by appending current simualtion year to original file name
@param file_name Full path of the original output file name
@param year Current simulation years or some other description
@return New file name with 'year' appended to the stem of the 'file_name'
@retval new_file_name New file name as string
"""
p=pathlib.Path(file_name)
stem=p.stem
parent=p.parent
suffix=p.suffix
new_file_name = parent.joinpath(pathlib.Path(stem+'_'+str(year)+str(suffix)))
return str(new_file_name)
def motti_coefficients_mean(res):
"""
Write the mean of dGrowthPrebas values to file for Motti
@param res dGrowthPrebas coeffients
@retval dfmotti DataFrame of the means of coefficients in `res`.
"""
dH = res[0]
dD = res[1]
dV = res[2]
dHmean = np.mean(dH.T,axis=1)
dDmean = np.mean(dD.T,axis=1)
dVmean = np.mean(dV.T,axis=1)
dfdHmean = pd.DataFrame(dHmean)
dfdDmean = pd.DataFrame(dDmean)
dfdVmean = pd.DataFrame(dVmean)
dfmotti = pd.concat([dfdHmean,dfdDmean,dfdVmean],axis=1,ignore_index=True)
dfmotti.columns = motti_coeffient_cols
dfmotti.index.name=prebas_layers
return dfmotti
def write_prebas_coefficients_mean_single_site(res,file_name:str):
"""
Write the means of dGrowthPrebas values to file for Motti
@param res dGrowthPrebas coeffients
@param file_name Output file name
@return Write to file the mean of coefficients in `res`.
"""
dfmotti = motti_coefficients_mean(res)
dfmotti.to_csv(file_name,sep=" ",na_rep='NA')
def write_prebas_coefficients(res,file_name:str):
"""
Write the mean of dGrowthPrebas values to file for Motti
@param res dGrowthPrebas coeffients
@param file_name Output file name
@return Write to file the mean of coefficients in `res`.
"""
dG = res[0]
dH = res[1]
dD = res[2]
dG0 = dG[0]
dH0 = dH[0]
dD0 = dD[0]
dGmean = np.mean(dG0.T,axis=1)
dHmean = np.mean(dH0.T,axis=1)
dDmean = np.mean(dD0.T,axis=1)
dfdGmean = pd.DataFrame(dGmean)
dfHmean = pd.DataFrame(dHmean)
dfDmean = pd.DataFrame(dDmean)
dfmotti = pd.concat([dfdGmean,dfHmean,dfDmean],axis=1,ignore_index=True)
dfmotti.columns = motti_coeffient_cols
dfmotti.index.name=layers
dfmotti.to_csv(file_name,sep=" ")
def motti_init(motti_init_file:str,motti_stand_file:str,prebas_model_tree_file:str):
"""
The first MOTTI initialization run before simulation
@param motti_init_file the PREINIT file for MOTTI
@param stand_data_file The stand data output file and input data for Prebas
@param prebas_model_tree_file The output model tree data and for Prebas
"""
print("INIT BEGIN")
print("INPUT:",motti_init_file)
print("OUTPUT:",motti_stand_file)
print("OUTPUT:",prebas_model_tree_file)
subprocess.run([str(MOTTI_INST_PATH.joinpath(MOTTIWB)),'PREBAS','INISTATE',
'-in',motti_init_file,'-out',motti_stand_file,'-outprbs',prebas_model_tree_file],
env=environment,capture_output=True,text=True)
print("INIT DONE")
def motti_growth(years,motti_input_stand_file:str,motti_output_stand_file:str,prebas_model_tree_file:str,prebas_coeff_file:str):
"""
Motti growth
@param years Simulation years
@param motti_input_stand_file Motti stand file
@param motti_output_stand_file Motti stand file after simulation
@param prebas_model_tree_file Motti model tree file for Prebas
@param prebas_coeff_file Coefficients from Prebas to be used in Motti
"""
print("MOTTI GROWTH BEGIN")
subprocess.run([str(MOTTI_INST_PATH.joinpath(MOTTIWB)),'PREBAS','-simulate',str(years),
'-in',motti_input_stand_file,'-out',motti_output_stand_file,
'-outprbs',prebas_model_tree_file,'-prebascoeff',prebas_coeff_file],
env=environment,capture_output=True,text=True)
print("MOTTI GROWTH DONE")
def read_motti_site_type(f:str)->float:
"""
Read Motti stand file and return site type.
@note Currently for one site only
@param f Site file
@return Site type
@retval stype Site type as float
"""
df = pd.read_csv(f,engine='python',sep=r'\s+',nrows=30,decimal=DECIMALMARKER,
names=['Index','Value'],header=0)
stype = df[df['Index']==SITE_TYPE_INDEX].iloc[0,1]
return stype
def read_motti_model_tree_info(f:str):
"""
Read Motti model tree/respresentetive trees info and return dataframe of model tree data for Prebas
@note Currently assuming one stand and one tree species
@param f Motti model tree info file
@return Data frame of model tree info, Number of model trees, number of tree species
"""
df = pd.read_csv(f,engine='python',sep=r'\s+',decimal=DECIMALMARKER,names=['INDEX0','INDEX1','INDEX2','VALUE'])
dfg = df.groupby(['INDEX2'])
ngroups = dfg.ngroups
lss = []
for n in range(1,ngroups+1):
g = dfg.get_group((n,))
g.reset_index()
s = list(g['VALUE'])
lss.append(s)
df_tree_info = pd.DataFrame(lss)
df_tree_info['Ac'] = 0.0
df_tree_info.columns = init_var_cols
nspecies = len(set(df_tree_info['SpeciesID']))
return (df_tree_info,ngroups,nspecies)
def prebas_input(site_info:str,model_tree_info:str,region:int):
"""
Create Prebas input data from Motti output files
@param site_info Motti stand level output file
@param model_tree_info Motti tree level output file
@return Prebas dataframes for Site info and tree/layer level Initial variables
@retval (df_site_info,df_tree_info) 2-tuple of Site info and Initial tree/Prebas layer
dataframes respectively
"""
site_type = read_motti_site_type(site_info)
(df_tree_info,n_model_trees,nspecies) = read_motti_model_tree_info(model_tree_info)
df_site_info = pd.DataFrame(data=0,index=[0],columns=site_info_cols)
df_site_info['SiteID'] = 1
df_site_info['climID'] = region
df_site_info['SiteType'] = site_type
df_site_info['SWinit (initial soil water)'] = 160.0
df_site_info['Sinit (initial temperature acclimation state)'] = 20.0
df_site_info['NLayers'] = n_model_trees
df_site_info['NSpecies'] = nspecies
df_site_info['SoilDepth'] = 413.0
df_site_info["Effective field capacity"] = 0.45
df_site_info["Permanent wilthing point"] = 0.118
return (df_site_info,df_tree_info)
def prebas_input_single_site(site_info:str,model_tree_info:str,region:int):
"""
Create Prebas input data from Motti output files for single site.
@note Columns NLayers and NSpecies are removed in Site info dataframes for dGrowthPrebas
@param site_info Motti stand level output file
@param model_tree_info Motti tree level output file
@return Prebas dataframes for Site info and tree/layer level Initial variables
@retval (df_site_info,df_tree_info) 2-tuple of Site info and Initial tree/Prebas layer
dataframes respectively
"""
site_type = read_motti_site_type(site_info)
(df_tree_info,n_model_trees,nspecies) = read_motti_model_tree_info(model_tree_info)
df_site_info = pd.DataFrame(data=0,index=[0],columns=site_info_cols)
df_site_info['SiteID'] = 1
df_site_info['climID'] = region
df_site_info['SiteType'] = site_type
df_site_info['SWinit (initial soil water)'] = 160.0
df_site_info['Sinit (initial temperature acclimation state)'] = 20.0
df_site_info['NLayers'] = n_model_trees
df_site_info['NSpecies'] = nspecies
df_site_info['SoilDepth'] = 413.0
df_site_info["Effective field capacity"] = 0.45
df_site_info["Permanent wilthing point"] = 0.118
#Remove NLayers and NSpecies
df_site_info=df_site_info.drop(columns=['NLayers','NSpecies'])
return (df_site_info,df_tree_info)
def dgrowthprebas(years,siteInfo,initVar,PARtran,New_PARtran,TAirtran,New_TAirtran,
Preciptran,New_Preciptran,VPDtran,New_VPDtran,CO2tran,New_CO2tran):
"""
Call to dGrowthPrebas
@param years Number of years to simulate
@param siteInfo Site data from Motti plus Prebas default values
@param initVar Model tree data from Motti
\note PARtran - New_CO2tran weather data for Prebas
"""
print("DGROWTHPREBAS BEGIN")
# Call dGrowthPrebas
res = r['dGrowthPrebas'](years,siteInfo,initVar,
PARtran,New_PARtran,
TAirtran,New_TAirtran,
Preciptran,New_Preciptran,
VPDtran,New_VPDtran,
CO2tran,New_CO2tran)
#To see the same in python matrix transposes T are needed
print("DGROWTH PREBAS END")
return res
if __name__ == "__main__":
import climateconfig as climconf
import sampling as samp
class MetavarAndDefaultFormatter(
argparse.MetavarTypeHelpFormatter,argparse.ArgumentDefaultsHelpFormatter):
pass
parser = argparse.ArgumentParser(prog="mottiprebas.py",formatter_class = MetavarAndDefaultFormatter,
description="Run Motti under climate change with Prebas",
epilog="Available climate scenarios: "+
str(1)+": "+climconf.climate_scenarios[0]+" "+
str(2)+": "+climconf.climate_scenarios[1]+" "+
str(3)+": "+climconf.climate_scenarios[2]+" "+
str(4)+": "+ climconf.climate_scenarios[3])
parser.add_argument("-y","--years",dest="y",type=int,required=True,help="Total simulation years")
parser.add_argument("-i","--interval",dest="i",type=int,default=5,
help="Prebas simulation years / Motti time step")
parser.add_argument("-m","--result_directory",dest="m",type=str,required=True,
help="Simulation results main directory")
parser.add_argument("-d","--initdata",dest="d",type=str,required=True,
help="Motti initial data file(s), regular expression (Motti input, full path)")
parser.add_argument("-s","--stand",dest="s", type=str,required=True,
help="Motti stand file (Motti output, Prebas input, full path)")
parser.add_argument("-t","--model_trees",dest="t",type=str,required=True,
help="Motti model tree file (Motti output, Prebas input, full path)")
parser.add_argument("-c","--coeff",dest="c",type=str,required=True,
help="Prebas coefficients file (Prebas output, Motti input, full path)")
parser.add_argument("-r","--climate_region",dest="r",type=int,required=True,choices=[1,2,3,4,5,6,7],
help="Climatic region in Finland")
parser.add_argument("-w","--climate_scenario",dest="w",type=int,required=True,choices=[1,2,3,4],
help="Climate scenario (see climatedata.py for scenario names)")
parser.add_argument("-e","--climate_scenario_data_start",dest="e",type=int,default=2025,
help="Climate scenario data start year")
parser.add_argument("-f","--climate_scenario_start",dest="f",type=int,default=2025,
help="Climate scenario start year in simulations")
args = parser.parse_args()
#Simulation time and time steps
simulation_time = args.y
simulation_step = args.i
#20 years of current climate data
climate_data = 20
#Climate scenaria data start year
climate_scenario_data_start = args.e
#Climate scenario start year
climate_scenario_start = args.f
# Load and source necessary weather data files.
# Replace sample demo data with real data.
#import demodata as dd
#Set-up climate region and scenario
region = args.r
scenario = args.w
climconf.climateid=region
climconf.scenarioid=scenario
#Set-up climate data: "climateconfig" is used to select climatic region (i.e, "climateid")
#and climate scenario (i.e., "scenarioid")
import climatedata as clim
#Create simulation results directory
result_dir = args.m
p_results = pathlib.Path(result_dir)
p_results.mkdir(parents=True,exist_ok=True)
#Set-up file names
initial_data_file_reg_expr = args.d
initial_motti_file_ls = glob.glob(initial_data_file_reg_expr)
for initial_file in initial_motti_file_ls:
print("MOTTI INITIAL FILE:", initial_file)
#Create results subdirectory base on Motti initialization file name
p_results_base_dir = p_results.joinpath(pathlib.Path(initial_file).stem)
#Copy Motti initial file to result directory
full_path_init_file = p_results_base_dir.joinpath(pathlib.Path(initial_file))
full_path_init_file.parent.mkdir(parents=True,exist_ok=True)
file_content = pathlib.Path(initial_file).read_text(encoding="utf-8")
full_path_init_file.write_text(file_content,encoding="utf-8")
#Create subdirectories for original stand file, model tree files and Prebas coefficient file
orig_stand_file = current_stand_file = p_results_base_dir.joinpath(pathlib.Path(args.s))
orig_stand_file.parent.mkdir(parents=True,exist_ok=True)
orig_model_tree_file = current_model_tree_file = p_results_base_dir.joinpath(pathlib.Path(args.t))
orig_model_tree_file.parent.mkdir(parents=True,exist_ok=True)
orig_coeff_file = current_coeff_file = p_results_base_dir.joinpath(pathlib.Path(args.c))
orig_coeff_file.parent.mkdir(parents=True,exist_ok=True)
#After that convert file names to strings and use them to create subsequent file names for
#simulation steps
orig_stand_file = current_stand_file = str(current_stand_file)
orig_model_tree_file = current_model_tree_file = str(current_model_tree_file)
orig_coeff_file = current_coeff_file = str(current_coeff_file)
#Motti initialization that produces first stand and model tree files for Prebas
motti_init(full_path_init_file,current_stand_file,current_model_tree_file)
df_ls=[]
year_ls=[]
for year in range(0,simulation_time,simulation_step):
print("YEAR",year)
(df_site_info,df_tree_info)= prebas_input_single_site(current_stand_file,current_model_tree_file,region)
new_stand_file = create_new_file_name(orig_stand_file,str(year)+'-'+str(year+simulation_step))
new_model_tree_file = create_new_file_name(orig_model_tree_file,str(year)+'-'+str(year+simulation_step))
current_coeff_file = create_new_file_name(orig_coeff_file,str(year)+'-'+str(year+simulation_step))
#convert_r:
#Site info is data frame but Prebas requires data array
#Tree info is N trees x 7 data frame but Prebas requires 7 x N trees matrix (2D data array)
(site_info_r,tree_info_r) = convert_r(df_site_info,df_tree_info.T)
cw_select = samp.current_climate_selector(20,simulation_step)
cscen_select = samp.climate_scenario_selector(climate_scenario_data_start,climate_scenario_start,
simulation_step)
#Set next start year for climate scenario
climate_scenario_start = climate_scenario_start+simulation_step
#Prebas produces coefficients in "res" for Motti
res = dgrowthprebas(simulation_step,site_info_r,tree_info_r,
clim.PAR_siteX_r.rx(cw_select),clim.newPAR_siteX_r.rx(cscen_select),
clim.TAir_siteX_r.rx(cw_select),clim.newTAir_siteX_r.rx(cscen_select),
clim.Precip_siteX_r.rx(cw_select),clim.newPrecip_siteX_r.rx(cscen_select),
clim.VPD_siteX_r.rx(cw_select),clim.newVPD_siteX_r.rx(cscen_select),
clim.CO2_siteX_r.rx(cw_select),clim.newCO2_siteX_r.rx(cscen_select))
write_prebas_coefficients_mean_single_site(res,current_coeff_file)
#Collect Prebas coefficients for Excel file
df = motti_coefficients_mean(res)
df_ls.append(df)
year_ls.append(year)
#Motti growth step: read current_stand_file and current_coeff_file,
# produce new_stand_file and new_model_tree_file
motti_growth(simulation_step,current_stand_file,new_stand_file,new_model_tree_file,current_coeff_file)
#The new stand file becomes the next starting point for Motti
#The new stand file and the new model tree file become the next starting point for Prebas
current_stand_file = new_stand_file
current_model_tree_file = new_model_tree_file
#Write Prebas coeffients to excel file
full_path_coeff_excel_file = pathlib.Path(orig_coeff_file).with_suffix('.xlsx')
excel_writer = pd.ExcelWriter(str(full_path_coeff_excel_file), engine='openpyxl')
for (df,year) in zip(df_ls,year_ls):
df.to_excel(excel_writer,sheet_name="Year "+str(year)+'-'+str(year+simulation_step),na_rep='NA')
excel_writer.close()
#Write command line
p_command_line_dir = p_results.joinpath(pathlib.Path("CommandLine"))
p_command_line_dir.mkdir(parents=True,exist_ok=True)
p_command_line_file=p_command_line_dir.joinpath(pathlib.Path("command_line.txt"))
with open(str(p_command_line_file),'w') as f:
json.dump(args.__dict__,f,indent=2)