-
Notifications
You must be signed in to change notification settings - Fork 30
/
metrics.py
75 lines (60 loc) · 2.22 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"""
Clustering metrics functions
@author Florent Forest
@version 2.0
"""
import numpy as np
from sklearn import metrics
from scipy.optimize import linear_sum_assignment as linear_assignment
def cluster_acc(y_true, y_pred):
"""
Calculate unsupervised clustering accuracy. Requires scikit-learn installed
# Arguments
y_true: true labels, numpy.array with shape `(n_samples,)`
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
# Return
accuracy, in [0,1]
"""
y_true = y_true.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
ind = linear_assignment(w.max() - w)
return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.size
def cluster_purity(y_true, y_pred):
"""
Calculate clustering purity
# Arguments
y_true: true labels, numpy.array with shape `(n_samples,)`
y_pred: predicted labels, numpy.array with shape `(n_samples,)`
# Return
purity, in [0,1]
"""
y_true = y_true.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
label_mapping = w.argmax(axis=1)
y_pred_voted = y_pred.copy()
for i in range(y_pred.size):
y_pred_voted[i] = label_mapping[y_pred[i]]
return metrics.accuracy_score(y_pred_voted, y_true)
def quantization_error(d):
"""
Calculate k-means quantization error (internal DESOM function)
"""
return d.min(axis=1).mean()
def topographic_error(d, map_size):
"""
Calculate SOM topographic error (internal DESOM function)
Topographic error is the ratio of data points for which the two best matching units are not neighbors on the map.
"""
h, w = map_size
def is_adjacent(k, l):
return (abs(k//w-l//w) == 1 and abs(k % w - l % w) == 0) or (abs(k//w-l//w) == 0 and abs(k % w - l % w) == 1)
btmus = np.argsort(d, axis=1)[:, :2] # best two matching units
return 1.-np.mean([is_adjacent(btmus[i, 0], btmus[i, 1]) for i in range(d.shape[0])])