-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathevaluation.py
427 lines (381 loc) · 18.3 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
"""
Performance evaluator
@author Florent Forest
"""
import csv
from somperf.metrics import *
from somperf.utils.topology import rectangular_topology_dist
import sklearn.metrics as skmetrics
from sharpness import prototype_sharpness_ratio
class PerfLogger:
def __init__(self,
with_validation=False,
with_labels=False,
with_latent_metrics=False,
save_dir='results/tmp'):
print('Initializing PerfLogger.')
self.with_validation = with_validation
# Metrics monitored during training
self.metrics = [
'iteration',
'T',
'L',
'Lr',
'Lsom',
'quantization_error',
'topographic_error',
'combined_error',
'silhouette'
]
# Metrics evaluated on entire dataset after training
self.evaluation_metrics = [
'iteration',
# 'combined_error',
# 'kruskal_shepard_error',
# 'neighborhood_preservation',
# 'trustworthiness',
# 'quantization_error',
# 'topographic_error',
# 'silhouette',
'combined_error_val',
'kruskal_shepard_error_val',
'neighborhood_preservation_val',
'trustworthiness_val',
'quantization_error_val',
'topographic_error_val',
'silhouette_val',
'topographic_product'
]
if with_labels:
self.metrics += [
# 'accuracy',
'purity',
'nmi',
'ari'
]
self.evaluation_metrics += [
# 'accuracy',
'purity_val',
'nmi_val',
'ari_val',
'class_scatter_index_val',
'entropy_val'
]
if with_latent_metrics:
self.metrics += [
'latent_quantization_error',
'latent_topographic_error',
'latent_combined_error',
'latent_silhouette'
]
self.evaluation_metrics += [
# 'latent_combined_error',
# 'latent_kruskal_shepard_error',
# 'latent_neighborhood_preservation',
# 'latent_trustworthiness',
# 'latent_quantization_error',
# 'latent_topographic_error',
# 'latent_silhouette',
'latent_combined_error_val',
'latent_kruskal_shepard_error_val',
'latent_neighborhood_preservation_val',
'latent_trustworthiness_val',
'latent_quantization_error_val',
'latent_topographic_error_val',
'latent_silhouette_val',
'latent_topographic_product'
]
if with_validation:
self.metrics += [metric + '_val' for metric in self.metrics if metric not in ['iteration',
'T',
'topographic_product',
'latent_topographic_product']]
self.logfile = open(save_dir + '/log.csv', 'w')
self.logwriter = csv.DictWriter(self.logfile, self.metrics)
self.logwriter.writeheader()
self.evalfile = open(save_dir + '/evaluation.csv', 'w')
self.evalwriter = csv.DictWriter(self.evalfile, self.evaluation_metrics)
self.evalwriter.writeheader()
def __delete__(self):
self.close()
def close(self):
print('Closing PerfLogger.')
self.logfile.close()
def log(self, summary, verbose=0):
"""Log monitored metrics.
Parameters
----------
summary : dict
training summary
verbose : int
verbosity level
0 = print nothing
1 = print only iteration number and losses
2 = print all monitored metrics
"""
results = self._compute_metrics(summary, self.metrics, verbose=False)
if verbose > 0:
print('iteration {} - T={}'.format(results['iteration'], results['T']))
if verbose == 1:
print('[Train] - Lr={:f}, Lsom={:f}, L={:f}'.format(results['Lr'], results['Lsom'], results['L']))
if self.with_validation:
print('[Val] - Lr={:f}, Lsom={:f}, L={:f}'.format(results['Lr_val'], results['Lsom_val'],
results['L_val']))
if verbose >= 2:
print(', '.join(['{}={:f}'.format(metric, results[metric]) for metric in self.metrics]))
self.logwriter.writerow(results)
def evaluate(self, summary, verbose=0):
"""Save evaluation metrics.
Parameters
----------
summary : dict
training summary
verbose : int
verbosity level
0 = print nothing
1 = print all evaluated metrics
"""
results = self._compute_metrics(summary, self.evaluation_metrics, verbose=True)
if verbose > 0:
print(', '.join(['{}={:f}'.format(metric, results[metric]) for metric in self.evaluation_metrics]))
self.evalwriter.writerow(results)
@staticmethod
def _compute_metrics(summary, metrics, verbose=False):
"""Computes selected metrics from a training summary.
Parameters
----------
summary : dict
training summary
metrics : list
list of metrics to compute
verbose : boolean
print metric being computed
Returns
-------
results : dict
metrics
"""
results = {}
# Basic info
if 'iteration' in metrics:
results['iteration'] = summary['iteration']
if 'T' in metrics:
results['T'] = summary['T']
# Losses
if 'L' in metrics:
results['L'] = summary['loss'][0]
if 'Lr' in metrics:
results['Lr'] = summary['loss'][1]
if 'Lsom' in metrics:
results['Lsom'] = summary['loss'][2]
if 'L_val' in metrics:
results['L_val'] = summary['val_loss'][0]
if 'Lr_val' in metrics:
results['Lr_val'] = summary['val_loss'][1]
if 'Lsom_val' in metrics:
results['Lsom_val'] = summary['val_loss'][2]
# Internal indices
dist_fun = rectangular_topology_dist(summary['map_size'])
# Combined error
if 'combined_error' in metrics:
if verbose:
print('Evaluating combined_error...')
results['combined_error'] = combined_error(dist_fun, som=summary['prototypes'], d=summary['d_original'])
if 'latent_combined_error' in metrics:
if verbose:
print('Evaluating latent_combined_error...')
results['latent_combined_error'] = combined_error(dist_fun, som=summary['latent_prototypes'],
d=summary['d_latent'])
if 'combined_error_val' in metrics:
if verbose:
print('Evaluating combined_error_val...')
results['combined_error_val'] = combined_error(dist_fun, som=summary['prototypes'],
d=summary['d_original_val'])
if 'latent_combined_error_val' in metrics:
if verbose:
print('Evaluating latent_combined_error_val...')
results['latent_combined_error_val'] = combined_error(dist_fun, som=summary['latent_prototypes'],
d=summary['d_latent_val'])
# Kruskal-Shepard error
if 'kruskal_shepard_error' in metrics:
if verbose:
print('Evaluating kruskal_shepard_error...')
results['kruskal_shepard_error'] = kruskal_shepard_error(dist_fun, x=summary['X'], d=summary['d_original'])
if 'latent_kruskal_shepard_error' in metrics:
if verbose:
print('Evaluating latent_kruskal_shepard_error...')
results['latent_kruskal_shepard_error'] = kruskal_shepard_error(dist_fun, x=summary['Z'],
d=summary['d_latent'])
if 'kruskal_shepard_error_val' in metrics:
if verbose:
print('Evaluating kruskal_shepard_error_val...')
results['kruskal_shepard_error_val'] = kruskal_shepard_error(dist_fun, x=summary['X_val'],
d=summary['d_original_val'])
if 'latent_kruskal_shepard_error_val' in metrics:
if verbose:
print('Evaluating latent_kruskal_shepard_error_val...')
results['latent_kruskal_shepard_error_val'] = kruskal_shepard_error(dist_fun, x=summary['Z_val'],
d=summary['d_latent_val'])
# Neighborhood preservation & Trustworthiness
if 'neighborhood_preservation' in metrics or 'trustworthiness' in metrics:
if verbose:
print('Evaluating neighborhood_preservation_trustworthiness...')
npr, tr = neighborhood_preservation_trustworthiness(1, som=summary['prototypes'], x=summary['X'],
d=summary['d_original'])
if 'neighborhood_preservation' in metrics:
results['neighborhood_preservation'] = npr
if 'trustworthiness' in metrics:
results['trustworthiness'] = tr
if 'latent_neighborhood_preservation' in metrics or 'latent_trustworthiness' in metrics:
if verbose:
print('Evaluating latent_neighborhood_preservation_trustworthiness...')
npr, tr = neighborhood_preservation_trustworthiness(1, som=summary['latent_prototypes'], x=summary['Z'],
d=summary['d_latent'])
if 'latent_neighborhood_preservation' in metrics:
results['latent_neighborhood_preservation'] = npr
if 'latent_trustworthiness' in metrics:
results['latent_trustworthiness'] = tr
if 'neighborhood_preservation_val' in metrics or 'trustworthiness_val' in metrics:
if verbose:
print('Evaluating neighborhood_preservation_trustworthiness_val...')
npr, tr = neighborhood_preservation_trustworthiness(1, som=summary['prototypes'],
x=summary['X_val'], d=summary['d_original_val'])
if 'neighborhood_preservation_val' in metrics:
results['neighborhood_preservation_val'] = npr
if 'trustworthiness_val' in metrics:
results['trustworthiness_val'] = tr
if 'latent_neighborhood_preservation_val' in metrics or 'latent_trustworthiness_val' in metrics:
print('Evaluating latent_neighborhood_preservation_trustworthiness_val...')
npr, tr = neighborhood_preservation_trustworthiness(1, som=summary['latent_prototypes'], x=summary['Z_val'],
d=summary['d_latent_val'])
if 'latent_neighborhood_preservation_val' in metrics:
results['latent_neighborhood_preservation_val'] = npr
if 'latent_trustworthiness_val' in metrics:
results['latent_trustworthiness_val'] = tr
# Quantization error
if 'quantization_error' in metrics:
if verbose:
print('Evaluating quantization_error...')
results['quantization_error'] = quantization_error(d=summary['d_original'])
if 'latent_quantization_error' in metrics:
if verbose:
print('Evaluating quantization_error...')
results['latent_quantization_error'] = quantization_error(d=summary['d_latent'])
if 'quantization_error_val' in metrics:
if verbose:
print('Evaluating quantization_error_val...')
results['quantization_error_val'] = quantization_error(d=summary['d_original_val'])
if 'latent_quantization_error_val' in metrics:
if verbose:
print('Evaluating latent_quantization_error_val...')
results['latent_quantization_error_val'] = quantization_error(d=summary['d_latent_val'])
# Topographic error
if 'topographic_error' in metrics:
if verbose:
print('Evaluating topographic_error...')
results['topographic_error'] = topographic_error(dist_fun, d=summary['d_original'])
if 'latent_topographic_error' in metrics:
if verbose:
print('Evaluating latent_topographic_error...')
results['latent_topographic_error'] = topographic_error(dist_fun, d=summary['d_latent'])
if 'topographic_error_val' in metrics:
if verbose:
print('Evaluating topographic_error_val...')
results['topographic_error_val'] = topographic_error(dist_fun, d=summary['d_original_val'])
if 'latent_topographic_error_val' in metrics:
if verbose:
print('Evaluating latent_topographic_error_val...')
results['latent_topographic_error_val'] = topographic_error(dist_fun, d=summary['d_latent_val'])
# Topographic product
if 'topographic_product' in metrics:
if verbose:
print('Evaluating topographic_product...')
results['topographic_product'] = topographic_product(dist_fun, som=summary['prototypes'])
if 'latent_topographic_product' in metrics:
if verbose:
print('Evaluating latent_topographic_product...')
results['latent_topographic_product'] = topographic_product(dist_fun, som=summary['latent_prototypes'])
# Silhouette
if 'silhouette' in metrics:
if verbose:
print('Evaluating silhouette...')
results['silhouette'] = skmetrics.silhouette_score(summary['X'], summary['y_pred'])
if 'latent_silhouette' in metrics:
if verbose:
print('Evaluating latent_silhouette...')
results['latent_silhouette'] = skmetrics.silhouette_score(summary['Z'], summary['y_pred'])
if 'silhouette_val' in metrics:
if verbose:
print('Evaluating silhouette_val...')
results['silhouette_val'] = skmetrics.silhouette_score(summary['X_val'], summary['y_val_pred'])
if 'latent_silhouette_val' in metrics:
if verbose:
print('Evaluating latent_silhouette_val...')
results['latent_silhouette_val'] = skmetrics.silhouette_score(summary['Z_val'], summary['y_val_pred'])
# External indices
# Clustering accuracy
if 'accuracy' in metrics:
if verbose:
print('Evaluating accuracy...')
results['accuracy'] = clustering_accuracy(summary['y_true'], summary['y_pred'])
if 'accuracy_val' in metrics:
if verbose:
print('Evaluating accuracy_val...')
results['accuracy_val'] = clustering_accuracy(summary['y_val_true'], summary['y_val_pred'])
# Purity
if 'purity' in metrics:
if verbose:
print('Evaluating purity...')
results['purity'] = purity(summary['y_true'], summary['y_pred'])
if 'purity_val' in metrics:
if verbose:
print('Evaluating purity_val...')
results['purity_val'] = purity(summary['y_val_true'], summary['y_val_pred'])
# NMI
if 'nmi' in metrics:
if verbose:
print('Evaluating nmi...')
results['nmi'] = skmetrics.normalized_mutual_info_score(summary['y_true'], summary['y_pred'])
if 'nmi_val' in metrics:
if verbose:
print('Evaluating nmi_val...')
results['nmi_val'] = skmetrics.normalized_mutual_info_score(summary['y_val_true'], summary['y_val_pred'])
# ARI
if 'ari' in metrics:
if verbose:
print('Evaluating ari...')
results['ari'] = skmetrics.adjusted_rand_score(summary['y_true'], summary['y_pred'])
if 'ari_val' in metrics:
if verbose:
print('Evaluating ari_val...')
results['ari_val'] = skmetrics.adjusted_rand_score(summary['y_val_true'], summary['y_val_pred'])
# Class scatter index
if 'class_scatter_index' in metrics:
if verbose:
print('Evaluating csi...')
results['class_scatter_index'] = class_scatter_index(dist_fun, summary['y_true'], summary['y_pred'])
if 'class_scatter_index_val' in metrics:
if verbose:
print('Evaluating csi_val...')
results['class_scatter_index_val'] = class_scatter_index(dist_fun, summary['y_val_true'],
summary['y_val_pred'])
# Entropy
if 'entropy' in metrics:
if verbose:
print('Evaluating entropy...')
results['entropy'] = entropy(summary['y_true'], summary['y_pred'])
if 'entropy_val' in metrics:
if verbose:
print('Evaluating entropy_val...')
results['entropy_val'] = entropy(summary['y_val_true'], summary['y_val_pred'])
# Prototype sharpness ratio
if 'prototype_sharpness_ratio' in metrics:
if verbose:
print('Evaluating prototype_sharpness_ratio...')
results['prototype_sharpness_ratio'] = prototype_sharpness_ratio(summary['X'], summary['prototypes'])
if 'prototype_sharpness_ratio_val' in metrics:
if verbose:
print('Evaluating prototype_sharpness_ratio_val...')
results['prototype_sharpness_ratio_val'] = prototype_sharpness_ratio(summary['X_val'],
summary['prototypes'])
return results