You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The operator should support all optional arguments defined in the interface and return the corresponding number of values.
算子应支持接口中定义的所有参数选项,并返回相应数量的值。
DDL 提交时间
Please submit a Pull Request within 3 weeks after accepting the assignment.
请于接取任务后三周内提交PR。
Please provide both accuracy test and performance test code.
请同时提供实现正确性测试与性能测试代码。
The text was updated successfully, but these errors were encountered:
Description 任务介绍
Develop backward function for batch_norm operator.
开发batch_norm算子的反向功能。
Requirements 任务要求
Interface 接口
batch_norm_backward(Tensor grad_out, Tensor input, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, bool update, float eps, bool[3] output_mask, Tensor reserve) -> (Tensor, Tensor, Tensor)
Function reference 功能参考
https://pytorch.org/docs/stable/generated/torch.nn.functional.batch_norm.html
Implementation reference 实现参考
https://github.com/FlagOpen/FlagGems/blob/master/src/flag_gems/ops/groupnorm.py
https://github.com/FlagOpen/FlagGems/blob/master/src/flag_gems/ops/layernorm.py
The operator should support all optional arguments defined in the interface and return the corresponding number of values.
算子应支持接口中定义的所有参数选项,并返回相应数量的值。
DDL 提交时间
Please submit a Pull Request within 3 weeks after accepting the assignment.
请于接取任务后三周内提交PR。
Please provide both accuracy test and performance test code.
请同时提供实现正确性测试与性能测试代码。
The text was updated successfully, but these errors were encountered: