-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathintersectionMatrix.jl
44 lines (43 loc) · 1.67 KB
/
intersectionMatrix.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# import Pkg;
# Pkg.add("Hecke")
using Hecke
# Below: a is an integer s.t output = rank of Intersection matrix if a=0
#else returns the matrix as well as it's rank
function rkFQ(a)
K, w= cyclotomic_field(8::Int);
Kx, (x0, x1, x2, x3) = PolynomialRing(K, ["x0", "x1", "x2", "x3"]);
function list(w)
A = [] #empty array that will later contain matrices for the lines on the Fermat Quartic
for j in [1, 3, 5, 7]
for k in [1, 3, 5, 7]
# Li are matrices with specific entries from the coefficient of the defining polynomial equations
L1 = matrix(K, [1 w^j 0 0; 0 0 1 w^k]); # L1[j, k] = V(x0 + w^j * x1 , x2 + w^k * x3);
L2 = matrix(K, [1 0 w^j 0; 0 1 0 w^k]); #L2[j, k] = V(x0 + w^j * x2, x1 + w^k * x3);
L3 = matrix(K, [1 0 0 w^j; 0 1 w^k 0]); #L3[j, k] = V(x0 + w^j * x3, x1 + w^k * x2);
A = push!(A, L1, L2, L3);
end
end
return A;
end
# Generate matrices of the form (Lm | Ln) to find which lines intersect each other
M = list(w);
Im = Array{Int64}(undef, 48,48); #Im is the intersection matrix
for i in 1:size(M)[1]
for j in 1:size(M)[1]
N = vcat(M[i], M[j]);
if rank(N) == 2 # rank() = 2 -> self intersection of lines
Im[i, j] = -2;
elseif rank(N) == 3 # rank() = 3 -> the two lines intersect at a point
Im[i, j] = 1;
else # rank() = 4 -> the lines don't intersect
Im[i, j] = 0;
end
end
end
if a == 0
result = rank(Im);
else a
result = Im;
end
return result
end