-
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathw31_frogs.Rmd
executable file
·72 lines (65 loc) · 3 KB
/
w31_frogs.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
title: "Week 31 Frogs"
author: "Federica Gazzelloni"
date: 2022-08-07
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
This is the final code for assembling all plots saved in the container images folder using {cowplot} package. In addition, some annotations and grobs are included.
All separate scripts are selfcontainers.
```{r circle-grob}
g <- grid::circleGrob(gp = grid::gpar(fill = NA,color="gray"))
```
```{r drawing}
library(cowplot)
ggdraw() +
draw_label("Oregon Spotted a Frog!",
x=0.227,y=0.95,size=34,
fontface = "bold",
fontfamily = "Roboto Condensed") +
draw_label(label="Captured",x=0.7,y=0.9,fontfamily = "Roboto Condensed") +
draw_label(label="Visual",x=0.6,y=0.9,fontfamily = "Roboto Condensed") +
draw_label(label="Frequency",x=0.5,y=0.9,fontfamily = "Roboto Condensed") +
draw_label(label="Radio-telemetry is used to study frogs (Rana pretiosa)\nat Crane Prairie Reservoir in Oregon.\nIndividual frog location tracking occurred roughly\nweekly between September and late November of 2018.",
fontfamily = "Roboto Condensed",
x=0.015,y=0.85,hjust=0) +
draw_label(label="On average more males are caught on radio-telemetry\nfrequencies than females. In the map the grey circles\nindicate the tracking location ranges based on mean\nrange difference among frequencies in same subsite. \n\nDataSource: #TidyTuesday 2022 week31\n@USGS data & @fgazzelloni | DataViz: Federica Gazzelloni",
fontfamily = "Roboto Condensed",
x=0.015,y=0.08,hjust=0,size=11) +
draw_label(label="On the left is the network\nof subsite and water type,\nit shows more frogs are\ncaptured in specific locations.\n\nOn the right is the models\nranking among many models.\nRandom Forest is the best\nperforming. Results shows on\naverage male are twice more\nlikely to get caught than\nfemales. More info:\nfedericagazzelloni.netlify.app",
fontfamily = "Roboto Condensed",
x=0.668,y=0.13,hjust=0,size=8) +
draw_image("container/images/globe.png",
scale=0.18,
x=0.4,y=0.38)+
draw_image("container/images/network_plot.png",
scale=0.29,
x=0.022,y=-0.38)+
draw_image("container/images/roc_plot.png",
scale=0.245,
x=0.4,y=-0.38)+
draw_image("container/images/lake_map.png",
scale=0.7,
x=0.14,y=0.01) +
draw_image("container/images/vip_plot.png",
scale=0.62,
x=-0.3,y=-0.03)+
draw_image("container/images/frog_logo_visual.png",
scale=0.2,
x=0.1, y=0.32) +
draw_image("container/images/frog_logo_captured.png",
scale=0.2,
x=0.2, y=0.32) +
draw_grob(g, scale = 0.05,x = 0,y = 0.33)+
draw_grob(g, scale = 0.025,x = 0,y = 0.33)+
draw_grob(g, scale = 0.01,x = 0,y = 0.33)
```
```{r save}
# ggsave("w31_frogs.png",
# width=10,
# height = 8,
# dpi=320,
# bg = "white")
```