-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlsgan-mnist-5.2.1.py
103 lines (86 loc) · 3.31 KB
/
lsgan-mnist-5.2.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
'''Trains LSGAN on MNIST using Keras
LSGAN is similar to DCGAN except for the MSE loss used by the
Discriminator and Adversarial networks.
[1] Radford, Alec, Luke Metz, and Soumith Chintala.
"Unsupervised representation learning with deep convolutional
generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
[2] Mao, Xudong, et al. "Least squares generative adversarial networks."
2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017.
'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.keras.layers import Input
from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.models import Model
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import load_model
import numpy as np
import argparse
import sys
sys.path.append("..")
from lib import gan
def build_and_train_models():
"""Load the dataset, build LSGAN discriminator,
generator, and adversarial models.
Call the LSGAN train routine.
"""
# load MNIST dataset
(x_train, _), (_, _) = mnist.load_data()
# reshape data for CNN as (28, 28, 1) and normalize
image_size = x_train.shape[1]
x_train = np.reshape(x_train,
[-1, image_size, image_size, 1])
x_train = x_train.astype('float32') / 255
model_name = "lsgan_mnist"
# network parameters
# the latent or z vector is 100-dim
latent_size = 100
input_shape = (image_size, image_size, 1)
batch_size = 64
lr = 2e-4
decay = 6e-8
train_steps = 40000
# build discriminator model
inputs = Input(shape=input_shape, name='discriminator_input')
discriminator = gan.discriminator(inputs, activation=None)
# [1] uses Adam, but discriminator easily
# converges with RMSprop
optimizer = RMSprop(lr=lr, decay=decay)
# LSGAN uses MSE loss [2]
discriminator.compile(loss='mse',
optimizer=optimizer,
metrics=['accuracy'])
discriminator.summary()
# build generator model
input_shape = (latent_size, )
inputs = Input(shape=input_shape, name='z_input')
generator = gan.generator(inputs, image_size)
generator.summary()
# build adversarial model = generator + discriminator
optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5)
# freeze the weights of discriminator
# during adversarial training
discriminator.trainable = False
adversarial = Model(inputs,
discriminator(generator(inputs)),
name=model_name)
# LSGAN uses MSE loss [2]
adversarial.compile(loss='mse',
optimizer=optimizer,
metrics=['accuracy'])
adversarial.summary()
# train discriminator and adversarial networks
models = (generator, discriminator, adversarial)
params = (batch_size, latent_size, train_steps, model_name)
gan.train(models, x_train, params)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
help_ = "Load generator h5 model with trained weights"
parser.add_argument("-g", "--generator", help=help_)
args = parser.parse_args()
if args.generator:
generator = load_model(args.generator)
gan.test_generator(generator)
else:
build_and_train_models()