FATE-LLM provide some builtin pellm models, users can use them simply to efficiently train their language models.
To use these models, please read the using tutorial of ChatGLM-6B Training Guide.
After reading the training tutorial above, it's easy to use other models listing in the following tabular by changing module_name
, class_name
, dataset
list below.
Model | ModuleName | ClassName | DataSetName |
---|---|---|---|
Qwen2 | pellm.qwen | Qwen | prompt_dataset |
Bloom-7B1 | pellm.bloom | Bloom | prompt_dataset |
OPT-6.7B | pellm.opt | OPT | prompt_dataset |
LLaMA-2-7B | pellm.llama | LLaMa | prompt_dataset |
LLaMA-7B | pellm.llama | LLaMa | prompt_dataset |
ChatGLM3-6B | pellm.chatglm | ChatGLM | prompt_dataset |
GPT-2 | pellm.gpt2 | GPT2CLM | prompt_dataset |
GPT-2 | pellm.gpt2 | GPT2 | seq_cls_dataset |
ALBERT | pellm.albert | Albert | seq_cls_dataset |
BART | pellm.bart | Bart | seq_cls_dataset |
BERT | pellm.bert | Bert | seq_cls_dataset |
DeBERTa | pellm.deberta | Deberta | seq_cls_dataset |
DistilBERT | pellm.distilbert | DistilBert | seq_cls_dataset |
RoBERTa | pellm.roberta | Roberta | seq_cls_dataset |