-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
51 lines (44 loc) · 2.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#!/usr/bin/env python3
from pattern_recognition.image_processing import sobel_filter, normalized_cut, sift_descriptor
from pattern_recognition.signal_processing import autoregressive_analysis, correlation_temperatures
import numpy as np
import cv2 as cv
import os
from matplotlib import pyplot as plt
from skimage.io import imshow
energy_data = os.path.abspath('datasets/energy_data/energydata_complete.csv')
autoregressive_analysis(energy_data)
correlation_temperatures(energy_data)
kp, sift_desc = sift_descriptor('datasets/msrc_data/1_1_s.bmp')
imshow(sift_desc)
plt.show()
"""fig = normalized_cut('datasets/msrc_data/1_1_s.bmp')
imshow("Normalized cut image", fig)
plt.show()"""
res = 'results/'
os.makedirs(res, exist_ok=True)
img_data = os.path.abspath("datasets/msrc_data/")
scale_factor = 0.8
# iterate over trees and faces images
for filename in os.listdir(img_data):
if ((filename.startswith('2_') and filename.endswith('s.bmp')) or
(filename.startswith('6_') and filename.endswith('s.bmp'))):
path = os.path.abspath(img_data + "/" + filename)
grey_img, Gx, Gy, Gx_cv2, Gy_cv2 = sobel_filter(path)
magnitude = np.hypot(Gx, Gy) # gradient magnitude approximation
exact_gradient = np.hypot(Gx * (1 / 8), Gy * (1 / 8)) # exact gradient magnitude
direction = cv.phase(np.float64(Gx), np.float64(Gy), angleInDegrees=True) # rotation angle
magnitude_cv2 = np.hypot(Gx_cv2, Gy_cv2)
direction_cv2 = cv.phase(np.float64(Gx_cv2), np.float64(Gy_cv2), angleInDegrees=True)
cv.imwrite(os.path.join(res, filename + "_grey.jpg"), grey_img)
cv.imwrite(os.path.join(res, filename + "_Sobel_X.jpg"), Gx)
cv.imwrite(os.path.join(res, filename + "_Sobel_X-scaled.jpg"), Gx * scale_factor)
cv.imwrite(os.path.join(res, filename + "_Sobel_X_OpenCV.jpg"), Gx_cv2)
cv.imwrite(os.path.join(res, filename + "_Sobel_Y.jpg"), Gy)
cv.imwrite(os.path.join(res, filename + "_Sobel_Y-scaled.jpg"), Gy * scale_factor)
cv.imwrite(os.path.join(res, filename + "_Sobel_Y_OpenCV.jpg"), Gy_cv2)
cv.imwrite(os.path.join(res, filename + "_Sobel_Filter.jpg"), np.float32(magnitude))
cv.imwrite(os.path.join(res, filename + "_Sobel_Filter_OpenCV.jpg"), np.float32(magnitude_cv2))
cv.imwrite(os.path.join(res, filename + "_Gradient.jpg"), np.float32(exact_gradient))
cv.imwrite(os.path.join(res, filename + "_Direction.jpg"), np.float32(direction))
cv.imwrite(os.path.join(res, filename + "_Direction_OpenCV.jpg"), np.float32(direction_cv2))