forked from x4nth055/pythoncode-tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
67 lines (57 loc) · 2.82 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from stock_prediction import create_model, load_data, np
from parameters import *
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
def plot_graph(model, data):
y_test = data["y_test"]
X_test = data["X_test"]
y_pred = model.predict(X_test)
y_test = np.squeeze(data["column_scaler"]["adjclose"].inverse_transform(np.expand_dims(y_test, axis=0)))
y_pred = np.squeeze(data["column_scaler"]["adjclose"].inverse_transform(y_pred))
plt.plot(y_test[-200:], c='b')
plt.plot(y_pred[-200:], c='r')
plt.xlabel("Days")
plt.ylabel("Price")
plt.legend(["Actual Price", "Predicted Price"])
plt.show()
def get_accuracy(model, data):
y_test = data["y_test"]
X_test = data["X_test"]
y_pred = model.predict(X_test)
y_test = np.squeeze(data["column_scaler"]["adjclose"].inverse_transform(np.expand_dims(y_test, axis=0)))
y_pred = np.squeeze(data["column_scaler"]["adjclose"].inverse_transform(y_pred))
y_pred = list(map(lambda current, future: int(float(future) > float(current)), y_test[:-LOOKUP_STEP], y_pred[LOOKUP_STEP:]))
y_test = list(map(lambda current, future: int(float(future) > float(current)), y_test[:-LOOKUP_STEP], y_test[LOOKUP_STEP:]))
return accuracy_score(y_test, y_pred)
def predict(model, data, classification=False):
# retrieve the last sequence from data
last_sequence = data["last_sequence"][:N_STEPS]
# retrieve the column scalers
column_scaler = data["column_scaler"]
# reshape the last sequence
last_sequence = last_sequence.reshape((last_sequence.shape[1], last_sequence.shape[0]))
# expand dimension
last_sequence = np.expand_dims(last_sequence, axis=0)
# get the prediction (scaled from 0 to 1)
prediction = model.predict(last_sequence)
# get the price (by inverting the scaling)
predicted_price = column_scaler["adjclose"].inverse_transform(prediction)[0][0]
return predicted_price
# load the data
data = load_data(ticker, N_STEPS, lookup_step=LOOKUP_STEP, test_size=TEST_SIZE,
feature_columns=FEATURE_COLUMNS, shuffle=False)
# construct the model
model = create_model(N_STEPS, loss=LOSS, units=UNITS, cell=CELL, n_layers=N_LAYERS,
dropout=DROPOUT, optimizer=OPTIMIZER, bidirectional=BIDIRECTIONAL)
model_path = os.path.join("results", model_name) + ".h5"
model.load_weights(model_path)
# evaluate the model
mse, mae = model.evaluate(data["X_test"], data["y_test"], verbose=0)
# calculate the mean absolute error (inverse scaling)
mean_absolute_error = data["column_scaler"]["adjclose"].inverse_transform([[mae]])[0][0]
print("Mean Absolute Error:", mean_absolute_error)
# predict the future price
future_price = predict(model, data)
print(f"Future price after {LOOKUP_STEP} days is {future_price:.2f}$")
print("Accuracy Score:", get_accuracy(model, data))
plot_graph(model, data)