-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtorch_example.py
194 lines (158 loc) · 5.84 KB
/
torch_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import json
from torch import nn
from torch.utils.data import Dataset, DataLoader, random_split, TensorDataset
import io
import torch
from pandas import DataFrame
from flock_sdk import FlockSDK, FlockModel
class CreditFraudNetMLP(nn.Module):
def __init__(self, num_features, num_classes):
super(CreditFraudNetMLP, self).__init__()
self.fc1 = nn.Sequential(
nn.Linear(num_features, 64), nn.ReLU(), nn.Dropout(0.2)
)
self.fc2 = nn.Sequential(nn.Linear(64, 128), nn.ReLU(), nn.Dropout(0.5))
self.fc3 = nn.Sequential(nn.Linear(128, num_classes), nn.Sigmoid())
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
output = self.fc3(x)
return output
class ExampleTorchModel(FlockModel):
def __init__(
self,
features,
epochs=1,
lr=0.03,
):
"""
Hyper parameters
"""
self.epochs = epochs
self.features = features
self.lr = lr
"""
Device setting
"""
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
self.device = torch.device(device)
def init_dataset(self, dataset_path: str) -> None:
self.dataset_path = dataset_path
with open(dataset_path, "r") as f:
dataset = json.load(f)
dataset_df = DataFrame.from_records(dataset)
train_ratio = 0.5
batch_size = 128
train_len = int(len(dataset) * train_ratio)
test_len = len(dataset) - train_len
# Split the dataset
train_dataset, test_dataset = random_split(dataset_df, [train_len, test_len])
X_df = dataset_df.iloc[:, :-1]
y_df = dataset_df.iloc[:, -1]
X_tensor = torch.tensor(X_df.values, dtype=torch.float32)
y_tensor = torch.tensor(y_df.values, dtype=torch.float32)
y_tensor = y_tensor.unsqueeze(1)
dataset_in_dataset = TensorDataset(X_tensor, y_tensor)
self.train_data_loader = DataLoader(
dataset_in_dataset,
batch_size=batch_size,
shuffle=True,
drop_last=False,
)
self.test_data_loader = DataLoader(
dataset_in_dataset,
batch_size=batch_size,
shuffle=True,
drop_last=False,
)
# Create data loaders
"""
self.train_data_loader = DataLoader(
train_dataset, batch_size=batch_size, shuffle=True
)
self.test_data_loader = DataLoader(
test_dataset, batch_size=batch_size, shuffle=True
)
"""
def get_model(self):
return CreditFraudNetMLP(num_features=self.features, num_classes=1)
def train(self, parameters) -> bytes:
model = self.get_model()
if parameters != None:
model.load_state_dict(torch.load(io.BytesIO(parameters)))
model.train()
optimizer = torch.optim.SGD(
model.parameters(),
lr=self.lr,
)
criterion = torch.nn.BCELoss()
model.to(self.device)
for epoch in range(self.epochs):
train_loss = 0.0
train_correct = 0
train_total = 0
for inputs, targets in self.train_data_loader:
optimizer.zero_grad()
inputs, targets = inputs.to(self.device), targets.to(self.device)
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item() * inputs.size(0)
predicted = torch.round(outputs).squeeze()
train_total += targets.size(0)
train_correct += (predicted == targets.squeeze()).sum().item()
print(
f"Training Epoch: {epoch}, Acc: {round(100.0 * train_correct / train_total, 2)}, Loss: {round(train_loss / train_total, 4)}"
)
buffer = io.BytesIO()
torch.save(model.state_dict(), buffer)
return buffer.getvalue()
def evaluate(self, parameters: bytes) -> float:
criterion = torch.nn.BCELoss()
model = self.get_model()
if parameters != None:
model.load_state_dict(torch.load(io.BytesIO(parameters)))
model.to(self.device)
model.eval()
test_correct = 0
test_loss = 0.0
test_total = 0
with torch.no_grad():
for inputs, targets in self.test_data_loader:
inputs, targets = inputs.to(self.device), targets.to(self.device)
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item() * inputs.size(0)
predicted = torch.round(outputs).squeeze()
test_total += targets.size(0)
test_correct += (predicted == targets.squeeze()).sum().item()
accuracy = test_correct / test_total
return accuracy
def aggregate(self, parameters_list: list[bytes]) -> bytes:
parameters_list = [
torch.load(io.BytesIO(parameters)) for parameters in parameters_list
]
averaged_params_template = parameters_list[0]
for k in averaged_params_template.keys():
temp_w = []
for local_w in parameters_list:
temp_w.append(local_w[k])
averaged_params_template[k] = sum(temp_w) / len(temp_w)
# Create a buffer
buffer = io.BytesIO()
# Save state dict to the buffer
torch.save(averaged_params_template, buffer)
# Get the byte representation
aggregated_parameters = buffer.getvalue()
return aggregated_parameters
if __name__ == "__main__":
epochs = 1
lr = 0.000001
features = 30
model = ExampleTorchModel(features, epochs=epochs, lr=lr)
sdk = FlockSDK(model)
sdk.run()