-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkeras_openpose_test.py
executable file
·369 lines (313 loc) · 15.4 KB
/
keras_openpose_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import argparse
import cv2
import math
import time
import numpy as np
import util
from config_reader import config_reader
from scipy.ndimage.filters import gaussian_filter
from model import get_testing_model
# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
[1, 16], [16, 18], [3, 17], [6, 18]]
# the middle joints heatmap correpondence
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
[55, 56], [37, 38], [45, 46]]
# visualize
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0],
[0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255],
[85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
w = 256
h = 256
size = (256,256)
def process (input_image, params, model_params, pose_scale):
oriImg = input_image # B,G,R order
multiplier = [x * model_params['boxsize'] / oriImg.shape[0] for x in params['scale_search']]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
#for m in range(len(multiplier)):
for m in range(1):
scale = multiplier[m]
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, model_params['stride'],
model_params['padValue'])
input_img = np.transpose(np.float32(imageToTest_padded[:,:,:,np.newaxis]), (3,0,1,2)) # required shape (1, width, height, channels)
output_blobs = model.predict(input_img)
# extract outputs, resize, and remove padding
heatmap = np.squeeze(output_blobs[1]) # output 1 is heatmaps
heatmap = cv2.resize(heatmap, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
paf = np.squeeze(output_blobs[0]) # output 0 is PAFs
paf = cv2.resize(paf, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
heatmap_avg = heatmap_avg + heatmap / len(multiplier)
paf_avg = paf_avg + paf / len(multiplier)
all_peaks = []
peak_counter = 0
for part in range(18):
map_ori = heatmap_avg[:, :, part]
map = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(map.shape)
map_left[1:, :] = map[:-1, :]
map_right = np.zeros(map.shape)
map_right[:-1, :] = map[1:, :]
map_up = np.zeros(map.shape)
map_up[:, 1:] = map[:, :-1]
map_down = np.zeros(map.shape)
map_down[:, :-1] = map[:, 1:]
peaks_binary = np.logical_and.reduce(
(map >= map_left, map >= map_right, map >= map_up, map >= map_down, map > params['thre1']))
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (id[i],) for i in range(len(id))]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
connection_all = []
special_k = []
mid_num = 10
for k in range(len(mapIdx)):
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
candA = all_peaks[limbSeq[k][0] - 1]
candB = all_peaks[limbSeq[k][1] - 1]
nA = len(candA)
nB = len(candB)
indexA, indexB = limbSeq[k]
if (nA != 0 and nB != 0):
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
# failure case when 2 body parts overlaps
if norm == 0:
continue
vec = np.divide(vec, norm)
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
np.linspace(candA[i][1], candB[j][1], num=mid_num)))
vec_x = np.array(
[score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
for I in range(len(startend))])
vec_y = np.array(
[score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
for I in range(len(startend))])
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
0.5 * oriImg.shape[0] / norm - 1, 0)
criterion1 = len(np.nonzero(score_midpts > params['thre2'])[0]) > 0.8 * len(
score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append([i, j, score_with_dist_prior,
score_with_dist_prior + candA[i][2] + candB[j][2]])
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
connection = np.zeros((0, 5))
for c in range(len(connection_candidate)):
i, j, s = connection_candidate[c][0:3]
if (i not in connection[:, 3] and j not in connection[:, 4]):
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
if (len(connection) >= min(nA, nB)):
break
connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
# last number in each row is the total parts number of that person
# the second last number in each row is the score of the overall configuration
subset = -1 * np.ones((0, 20))
candidate = np.array([item for sublist in all_peaks for item in sublist])
for k in range(len(mapIdx)):
if k not in special_k:
partAs = connection_all[k][:, 0]
partBs = connection_all[k][:, 1]
indexA, indexB = np.array(limbSeq[k]) - 1
for i in range(len(connection_all[k])): # = 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): # 1:size(subset,1):
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if (subset[j][indexB] != partBs[i]):
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
if len(np.nonzero(membership == 2)[0]) == 0: # merge
subset[j1][:-2] += (subset[j2][:-2] + 1)
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
else: # as like found == 1
subset[j1][indexB] = partBs[i]
subset[j1][-1] += 1
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
# if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + \
connection_all[k][i][2]
subset = np.vstack([subset, row])
# delete some rows of subset which has few parts occur
deleteIdx = []
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0)
#create a black use numpy
poseFrame = np.zeros((h, w, 3), np.uint8)
#fill the image with black
poseFrame.fill(1)
# draw 18 keypoints
keypoints = []
for i in range(18):
for j in range(len(all_peaks[i])):
# loc = all_peaks[i][j][0:2]
# print('x:', loc[0], ', y:', loc[1])
# cv2.circle(poseFrame, all_peaks[i][j][0:2], 4, colors[i], thickness=-1)
keypoints.append(all_peaks[i][j][0:2])
keypoints = normalize(keypoints, pose_scale)
for i in range(len(keypoints) if len(keypoints) < 18 else 18):
cv2.circle(poseFrame, keypoints[i], 4, colors[i], thickness=-1)
# draw 17 parts of a body
stickwidth = 4
for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i]) - 1]
if -1 in index:
continue
cur_poseFrame = poseFrame.copy()
Y = candidate[index.astype(int), 0]
X = candidate[index.astype(int), 1]
# normalize parts
X = X * pose_scale[0]
Y = Y * pose_scale[1]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_poseFrame, polygon, colors[i])
poseFrame = cv2.addWeighted(poseFrame, 0.4, cur_poseFrame, 0.6, 0)
poseFrame, cur_radius = move_pose_center(input_image.shape, poseFrame)
return poseFrame, cur_radius
# normalize keypoints
def normalize(src_points, scale):
normalized_points = []
# 缩放
mean_x = 0
mean_y = 0
for i in range(len(src_points)):
x = src_points[i][0] * scale[0]
y = src_points[i][1] * scale[1]
normalized_points.append((int(x), int(y)))
# mean_x += x
# mean_y += y
# 平移到画布中央
# mean_x = mean_x / len(normalized_points)
# mean_y = mean_y / len(normalized_points)
# move_x = img_size[1] / 2 - mean_x # shape[1] = width
# move_y = img_size[0] / 2 - mean_y - 20 # shape[0] = height,dela配重
# for i in range(len(normalized_points)):
# x = normalized_points[i][0] + move_x
# y = normalized_points[i][1] + move_y
# normalized_points[i] = (int(x), int(y))
return normalized_points
# 平移pose到画布中央
def move_pose_center(img_size, poseFrame):
# convert image to grayscale image
gray_image = cv2.cvtColor(poseFrame, cv2.COLOR_BGR2GRAY)
# convert the grayscale image to binary image
ret, thresh = cv2.threshold(gray_image, 5, 255, cv2.THRESH_BINARY)
# cv2.imshow('thresh', thresh)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]
(x, y), radius = cv2.minEnclosingCircle(cnt)
center = (int(x), int(y))
print('>>> radius:', radius)
radius = int(radius)
# cv2.circle(poseFrame, center, radius, (255, 0, 0), 2)
# 平移矩阵M:[[1,0,x],[0,1,y]]
M = np.float32([[1, 0, img_size[0]/2-x], [0, 1, img_size[1]/2-y]])
dst = cv2.warpAffine(poseFrame, M, (img_size[1], img_size[0]))
return dst, min(radius, img_size[0]/2, img_size[1]/2)
# 根据外接圆半径计算缩放比例
def getScale(pose_radius, model_radius=104.0):
s = model_radius / pose_radius
return (s, s)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--input', type=str, default='../../images/pbug_man_450x420.avi', help='input video')
parser.add_argument('--output', type=str, default='../../result/pose_out.avi', help='output pose video')
parser.add_argument('--model', type=str, default='model/keras/model.h5', help='path to the weights file')
args = parser.parse_args()
keras_weights_file = args.model
# load model
tic = time.time()
print('load model...')
# authors of original model don't use
# vgg normalization (subtracting mean) on input images
model = get_testing_model()
model.load_weights(keras_weights_file)
print('* h5模型加载时间为:{:.2f}s.'.format(time.time() - tic))
cap = cv2.VideoCapture(args.input if args.input else 0)
# 视频总帧数
frameNum = cap.get(cv2.CAP_PROP_FRAME_COUNT)
# vedio writer
# fourcc = cv.VideoWriter_fourcc('m', 'p', '4', 'v')
fourcc = cv2.VideoWriter_fourcc(* 'XVID')
# 保存size必须和输出size设定为一致,否则无法写入保存文件
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
size = (w, h)
poseout = cv2.VideoWriter(args.output, fourcc, 20.0, size)
start_time = time.time()
print('start processing...')
print('共计{}帧图像,预计耗时{:.2f}min.'.format(frameNum, frameNum * 1.75/60))
j = 1
scale = (0.7, 0.7) # request x==y!! a bug.
while(1):
ret, frame = cap.read()
if not ret:
break
params, model_params = config_reader()
# generate image with body parts
poseFrame, pose_radius = process(frame, params, model_params, scale)
scale = getScale(pose_radius)
print('>>> scale = ', scale)
# cur_pose + cur_frame 横向连接,图片作为pix2pix输入
cur_pairs = np.concatenate([poseFrame, frame], axis=1)
# write to pix2pix workdir
cv2.imwrite('../pytorch_pix2pix/datasets/pbug_full/test/curPose.jpg', cur_pairs)
# write in video
poseout.write(poseFrame)
end_time = time.time()
cv2.imshow('frame', frame)
cv2.imshow('poseFrame, scale', poseFrame)
j += 1
if j % 20 == 0:
# 记录时间
end_time = time.time()
print('已处理{}/{}帧图像, 用时{:.4f}s, 平均每帧用时{:.4f}s'.format(j, int(frameNum), end_time - start_time, (end_time-start_time)/j))
if cv2.waitKey(1) & 0xFF==ord('q'):
break
end_time = time.time()
print('{}张帧图像,处理完成!耗时{:.4f}s.'.format(j, end_time - start_time))
cap.release()
poseout.release()
cv2.destroyAllWindows()