-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsra_sample_parser.py
241 lines (209 loc) · 9.41 KB
/
sra_sample_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#!/usr/bin/env python3
""" SRA Biosample Parser
This script will parse the XML result file from a list of SRA samples(SRS). It takes a
single XML file as input, parsing it first a dictionary, and then
outputting to the terminal in TSV format, or to a file if an output file is provided.
"""
import os
import sys
import csv
import argparse
import pandas as pd
import xml.etree.ElementTree as ET
__version__ = "0.1.0"
__status__ = "Beta"
PLACEHOLDER_CHAR = ''
def usr_args():
"""Program Arguments
All arguments for process are defined here.
"""
# initialize parser
parser = argparse.ArgumentParser()
# set usages options
parser = argparse.ArgumentParser(
prog='sra_sample_parser.py',
usage='%(prog)s [options]')
# version
parser.add_argument(
'-v', '--version',
action='version',
version='%(prog)s ' + __version__)
parser.add_argument('-f', '--file',
required=True,
help="Input file. The input file should be a collection of SRS XML \
files.")
parser.add_argument('-b', '--bco_id',
help="BCO ID")
parser.add_argument('-s', '--schema',
help="Schema version")
parser.add_argument('-l', '--lineage_file',
#required=True,
help="Lineage file, in text format.")
parser.add_argument('-n', '--ngsqc_file',
required=True,
help="ngsQC file, in tsv format.")
parser.add_argument('-o', '--output',
help="Output file. If no output is provided, the resulting table will \
be output to the terminal.")
if len(sys.argv) <= 2:
sys.argv.append('--help')
return parser.parse_args()
def parse_xml(xml_file, ngsqc_file, samples, bco_id, schema_version):
"""Parse XML file
Parameters
----------
xml_file: str
file path/name to be parsed
ngsqc_file: str
file path/name to HIVE QC file
samples: dict
dictionary of samples
Returns
-------
samples: dict
dictionary of samples
"""
# read ngsqc
ngs = pd.read_table(ngsqc_file, sep='\t')
# scope down to relevant columns
ngs = ngs[['biosample', \
'bioproject', 'organism_name', 'infraspecific_name', \
'lineage', 'taxonomy_id', 'genome_assembly_id']]
# there can be >1 row per biosample
ngs = ngs.drop_duplicates()
# set biosample as the row index
ngs.index = ngs.biosample
organism_name = infraspecific_name = lineage = taxonomy_id \
= bioproject = biosample \
= strain = genome_assembly_id = sample_name \
= instrument = isolate = collected_by = collection_date \
= geo_loc_name = isolation_source = lat_lon = culture_collection = host\
= host_age = host_description = host_disease = host_disease_outcome \
= host_disease_stage = host_health_state = host_sex \
= id_method = biosample_score = PLACEHOLDER_CHAR
bco_id = bco_id or PLACEHOLDER_CHAR
schema_version = schema_version or PLACEHOLDER_CHAR
# create element tree object and get root element
root = ET.parse(xml_file).getroot()
for biosample in root:
biosample_id = biosample.attrib['accession']
for item in biosample.findall('./'):
for feature in item.findall('./'):
if 'db' in feature.attrib.keys() and feature.attrib['db'] == 'SRA':
sra_id = feature.text
if 'db_label' in feature.attrib.keys():
sample_name = feature.text
if feature.tag == 'Organism':
taxonomy_id = feature.attrib['taxonomy_id']
organism_name = feature.attrib['taxonomy_name']
# Get lineage
# with open(lineage_file, 'r') as lin_file:
# lineage = lin_file.readline().rstrip('\n')
ngs = ngs[['biosample',
'bioproject', 'organism_name', 'infraspecific_name',
'lineage', 'taxonomy_id', 'genome_assembly_id']]
# [0] below is taking the first row when duplicate results are returned.
# Using pandas to deduplicate is not a sufficient solution because
# the data can be messy (and such rows would not qualify as duplicates)
lineage = ngs[ngs.biosample == biosample_id].lineage[0]
bioproject = ngs[ngs.biosample == biosample_id].bioproject[0]
organism_name = ngs[ngs.biosample == biosample_id].organism_name[0]
infraspecific_name = ngs[ngs.biosample == biosample_id].infraspecific_name[0]
taxonomy_id = ngs[ngs.biosample == biosample_id].taxonomy_id[0]
genome_assembly_id = ngs[ngs.biosample == biosample_id].genome_assembly_id[0]
# Extract other attributes from XML
for attribute in biosample.findall('./Attributes/'):
if attribute.attrib['attribute_name'] == 'strain':
strain = attribute.text
if attribute.attrib['attribute_name'] == 'isolate':
isolate = attribute.text
if attribute.attrib['attribute_name'] == 'collected_by':
collected_by = attribute.text
if attribute.attrib['attribute_name'] == 'collection_date':
collection_date = attribute.text
if attribute.attrib['attribute_name'] == 'geo_loc_name':
geo_loc_name = attribute.text
if attribute.attrib['attribute_name'] == 'isolation_source':
isolation_source = attribute.text
if attribute.attrib['attribute_name'] == 'lat_lon':
lat_lon = attribute.text
if attribute.attrib['attribute_name'] == 'culture_collection':
culture_collection = attribute.text
if attribute.attrib['attribute_name'] == 'host':
host = attribute.text
if attribute.attrib['attribute_name'] == 'host_age':
host_age = attribute.text
if attribute.attrib['attribute_name'] == 'host_description':
host_description = attribute.text
if attribute.attrib['attribute_name'] == 'host_disease':
host_disease = attribute.text
if attribute.attrib['attribute_name'] == 'host_disease_outcome':
host_disease_outcome = attribute.text
if attribute.attrib['attribute_name'] == 'host_disease_stage':
host_disease_stage = attribute.text
if attribute.attrib['attribute_name'] == 'host_health_state':
host_health_state = attribute.text
if attribute.attrib['attribute_name'] == 'host_sex':
host_sex = attribute.text
if attribute.attrib['attribute_name'] == 'identification method':
id_method = attribute.text
if attribute.attrib['attribute_name'] == 'type-material':
type_material = attribute.text
samples[biosample_id] = [organism_name, infraspecific_name, lineage, \
taxonomy_id, bco_id, \
schema_version, bioproject, biosample_id, strain, genome_assembly_id, \
sample_name, instrument, isolate, collected_by, collection_date, \
geo_loc_name, isolation_source, lat_lon, culture_collection, host,\
host_age, host_description, host_disease, host_disease_outcome, \
host_disease_stage, host_health_state, host_sex, \
id_method]
biosample_score = len(samples[biosample_id])-samples[biosample_id].count(PLACEHOLDER_CHAR)
samples[biosample_id].append(biosample_score)
return samples
def sample_output( samples, header, output):
"""Sample Output
If an output file is supplied in the user arguments the samples dictionary
will be output in TSV to the supplied file. If no output is provided, the
samples dictionary will print to the terminal in a TSV format.
Parameters
----------
header: lst of str
List of column headers for the output
samples: dict
dictionary of samples
outputs: str, optional
file path/name to output data to
"""
if output:
sample_file = os.path.abspath(output)
with open(sample_file, 'w', encoding='utf8') as file:
writer = csv.writer(file, header, delimiter='\t')
writer.writerow(header)
for key in samples:
#row = [key] # biosample_id is no longer first in order
row = []
for item in range(len(samples[key])):
row.append(samples[key][item])
writer.writerow(row)
print('Samples written to ', sample_file)
else:
print('\t'.join(item for item in header))
for run in samples:
print('\t'.join(str(item) for item in samples[run]))
def main():
"""Main Fuunction
"""
samples = {}
header = ['organism_name', 'infraspecific_name', 'lineage', 'taxonomy_id', \
'bco_id', 'schema_version', 'bioproject', 'biosample', 'strain', \
'genome_assembly_id', 'sample_name', 'instrument', 'isolate', 'collected_by',\
'collection_date', 'geo_loc_name', 'isolation_source', 'lat_lon',\
'culture_collection', 'host', 'host_age', 'host_description', \
'host_disease', 'host_disease_outcome', 'host_disease_stage',\
'host_health_state', 'host_sex', 'id_method',\
'biosample_score']
args = usr_args()
parse_xml(args.file, args.ngsqc_file, samples, args.bco_id, schema_version = args.schema)
sample_output(samples, header, args.output)
if __name__ == "__main__":
main()