|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import tensorflow as tf\n", |
| 10 | + "import numpy as np" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "code", |
| 15 | + "execution_count": 2, |
| 16 | + "metadata": {}, |
| 17 | + "outputs": [ |
| 18 | + { |
| 19 | + "data": { |
| 20 | + "text/plain": [ |
| 21 | + "'1.9.0'" |
| 22 | + ] |
| 23 | + }, |
| 24 | + "execution_count": 2, |
| 25 | + "metadata": {}, |
| 26 | + "output_type": "execute_result" |
| 27 | + } |
| 28 | + ], |
| 29 | + "source": [ |
| 30 | + "tf.__version__" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "markdown", |
| 35 | + "metadata": {}, |
| 36 | + "source": [ |
| 37 | + "### 核,输入" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": 3, |
| 43 | + "metadata": {}, |
| 44 | + "outputs": [], |
| 45 | + "source": [ |
| 46 | + "kernel = np.arange(1, 10).reshape((3, 3))" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "code", |
| 51 | + "execution_count": 4, |
| 52 | + "metadata": {}, |
| 53 | + "outputs": [ |
| 54 | + { |
| 55 | + "data": { |
| 56 | + "text/plain": [ |
| 57 | + "array([[1, 2, 3],\n", |
| 58 | + " [4, 5, 6],\n", |
| 59 | + " [7, 8, 9]])" |
| 60 | + ] |
| 61 | + }, |
| 62 | + "execution_count": 4, |
| 63 | + "metadata": {}, |
| 64 | + "output_type": "execute_result" |
| 65 | + } |
| 66 | + ], |
| 67 | + "source": [ |
| 68 | + "kernel" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": 5, |
| 74 | + "metadata": {}, |
| 75 | + "outputs": [], |
| 76 | + "source": [ |
| 77 | + "C = np.array([[1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9, 0, 0, 0, 0, 0],\n", |
| 78 | + " [0, 1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9, 0, 0, 0, 0],\n", |
| 79 | + " [0, 0, 0, 0, 1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9, 0],\n", |
| 80 | + " [0, 0, 0, 0, 0, 1, 2, 3, 0, 4, 5, 6, 0, 7, 8, 9]])" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "code", |
| 85 | + "execution_count": 6, |
| 86 | + "metadata": {}, |
| 87 | + "outputs": [], |
| 88 | + "source": [ |
| 89 | + "input_ = np.arange(1, 17).reshape((4, 4))" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "code", |
| 94 | + "execution_count": 7, |
| 95 | + "metadata": { |
| 96 | + "scrolled": true |
| 97 | + }, |
| 98 | + "outputs": [ |
| 99 | + { |
| 100 | + "data": { |
| 101 | + "text/plain": [ |
| 102 | + "array([[ 1, 2, 3, 4],\n", |
| 103 | + " [ 5, 6, 7, 8],\n", |
| 104 | + " [ 9, 10, 11, 12],\n", |
| 105 | + " [13, 14, 15, 16]])" |
| 106 | + ] |
| 107 | + }, |
| 108 | + "execution_count": 7, |
| 109 | + "metadata": {}, |
| 110 | + "output_type": "execute_result" |
| 111 | + } |
| 112 | + ], |
| 113 | + "source": [ |
| 114 | + "input_" |
| 115 | + ] |
| 116 | + }, |
| 117 | + { |
| 118 | + "cell_type": "markdown", |
| 119 | + "metadata": {}, |
| 120 | + "source": [ |
| 121 | + "### 卷积 in Numpy" |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_type": "code", |
| 126 | + "execution_count": 8, |
| 127 | + "metadata": {}, |
| 128 | + "outputs": [], |
| 129 | + "source": [ |
| 130 | + "x = input_.reshape((-1, 1))" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "code", |
| 135 | + "execution_count": 9, |
| 136 | + "metadata": {}, |
| 137 | + "outputs": [ |
| 138 | + { |
| 139 | + "data": { |
| 140 | + "text/plain": [ |
| 141 | + "array([[ 1],\n", |
| 142 | + " [ 2],\n", |
| 143 | + " [ 3],\n", |
| 144 | + " [ 4],\n", |
| 145 | + " [ 5],\n", |
| 146 | + " [ 6],\n", |
| 147 | + " [ 7],\n", |
| 148 | + " [ 8],\n", |
| 149 | + " [ 9],\n", |
| 150 | + " [10],\n", |
| 151 | + " [11],\n", |
| 152 | + " [12],\n", |
| 153 | + " [13],\n", |
| 154 | + " [14],\n", |
| 155 | + " [15],\n", |
| 156 | + " [16]])" |
| 157 | + ] |
| 158 | + }, |
| 159 | + "execution_count": 9, |
| 160 | + "metadata": {}, |
| 161 | + "output_type": "execute_result" |
| 162 | + } |
| 163 | + ], |
| 164 | + "source": [ |
| 165 | + "x" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "code", |
| 170 | + "execution_count": 10, |
| 171 | + "metadata": {}, |
| 172 | + "outputs": [], |
| 173 | + "source": [ |
| 174 | + "y = C.dot(x)" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": 11, |
| 180 | + "metadata": {}, |
| 181 | + "outputs": [ |
| 182 | + { |
| 183 | + "data": { |
| 184 | + "text/plain": [ |
| 185 | + "array([[348],\n", |
| 186 | + " [393],\n", |
| 187 | + " [528],\n", |
| 188 | + " [573]])" |
| 189 | + ] |
| 190 | + }, |
| 191 | + "execution_count": 11, |
| 192 | + "metadata": {}, |
| 193 | + "output_type": "execute_result" |
| 194 | + } |
| 195 | + ], |
| 196 | + "source": [ |
| 197 | + "y" |
| 198 | + ] |
| 199 | + }, |
| 200 | + { |
| 201 | + "cell_type": "code", |
| 202 | + "execution_count": 12, |
| 203 | + "metadata": {}, |
| 204 | + "outputs": [], |
| 205 | + "source": [ |
| 206 | + "y = y.reshape((2, 2))" |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "code", |
| 211 | + "execution_count": 13, |
| 212 | + "metadata": {}, |
| 213 | + "outputs": [ |
| 214 | + { |
| 215 | + "data": { |
| 216 | + "text/plain": [ |
| 217 | + "array([[348, 393],\n", |
| 218 | + " [528, 573]])" |
| 219 | + ] |
| 220 | + }, |
| 221 | + "execution_count": 13, |
| 222 | + "metadata": {}, |
| 223 | + "output_type": "execute_result" |
| 224 | + } |
| 225 | + ], |
| 226 | + "source": [ |
| 227 | + "y" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "markdown", |
| 232 | + "metadata": {}, |
| 233 | + "source": [ |
| 234 | + "### 卷积 in TensorFlow" |
| 235 | + ] |
| 236 | + }, |
| 237 | + { |
| 238 | + "cell_type": "code", |
| 239 | + "execution_count": 14, |
| 240 | + "metadata": {}, |
| 241 | + "outputs": [], |
| 242 | + "source": [ |
| 243 | + "x = tf.expand_dims(tf.expand_dims(tf.constant(input_, dtype=tf.float32), axis=-1), axis=0)" |
| 244 | + ] |
| 245 | + }, |
| 246 | + { |
| 247 | + "cell_type": "code", |
| 248 | + "execution_count": 15, |
| 249 | + "metadata": {}, |
| 250 | + "outputs": [ |
| 251 | + { |
| 252 | + "data": { |
| 253 | + "text/plain": [ |
| 254 | + "[1, 4, 4, 1]" |
| 255 | + ] |
| 256 | + }, |
| 257 | + "execution_count": 15, |
| 258 | + "metadata": {}, |
| 259 | + "output_type": "execute_result" |
| 260 | + } |
| 261 | + ], |
| 262 | + "source": [ |
| 263 | + "x.get_shape().as_list()" |
| 264 | + ] |
| 265 | + }, |
| 266 | + { |
| 267 | + "cell_type": "code", |
| 268 | + "execution_count": 16, |
| 269 | + "metadata": {}, |
| 270 | + "outputs": [], |
| 271 | + "source": [ |
| 272 | + "kernel_conv = tf.expand_dims(tf.expand_dims(tf.constant(kernel, dtype=tf.float32), axis=-1), axis=-1)" |
| 273 | + ] |
| 274 | + }, |
| 275 | + { |
| 276 | + "cell_type": "code", |
| 277 | + "execution_count": 17, |
| 278 | + "metadata": {}, |
| 279 | + "outputs": [ |
| 280 | + { |
| 281 | + "data": { |
| 282 | + "text/plain": [ |
| 283 | + "[3, 3, 1, 1]" |
| 284 | + ] |
| 285 | + }, |
| 286 | + "execution_count": 17, |
| 287 | + "metadata": {}, |
| 288 | + "output_type": "execute_result" |
| 289 | + } |
| 290 | + ], |
| 291 | + "source": [ |
| 292 | + "kernel_conv.get_shape().as_list()" |
| 293 | + ] |
| 294 | + }, |
| 295 | + { |
| 296 | + "cell_type": "code", |
| 297 | + "execution_count": 18, |
| 298 | + "metadata": {}, |
| 299 | + "outputs": [], |
| 300 | + "source": [ |
| 301 | + "y = tf.nn.conv2d(x, kernel_conv, strides=(1, 1, 1, 1), padding='VALID')" |
| 302 | + ] |
| 303 | + }, |
| 304 | + { |
| 305 | + "cell_type": "code", |
| 306 | + "execution_count": 19, |
| 307 | + "metadata": {}, |
| 308 | + "outputs": [ |
| 309 | + { |
| 310 | + "name": "stdout", |
| 311 | + "output_type": "stream", |
| 312 | + "text": [ |
| 313 | + "[[348. 393.]\n", |
| 314 | + " [528. 573.]]\n" |
| 315 | + ] |
| 316 | + } |
| 317 | + ], |
| 318 | + "source": [ |
| 319 | + "with tf.Session() as sess:\n", |
| 320 | + " print(y.eval()[0, :, :, 0])" |
| 321 | + ] |
| 322 | + } |
| 323 | + ], |
| 324 | + "metadata": { |
| 325 | + "kernelspec": { |
| 326 | + "display_name": "Python 3", |
| 327 | + "language": "python", |
| 328 | + "name": "python3" |
| 329 | + }, |
| 330 | + "language_info": { |
| 331 | + "codemirror_mode": { |
| 332 | + "name": "ipython", |
| 333 | + "version": 3 |
| 334 | + }, |
| 335 | + "file_extension": ".py", |
| 336 | + "mimetype": "text/x-python", |
| 337 | + "name": "python", |
| 338 | + "nbconvert_exporter": "python", |
| 339 | + "pygments_lexer": "ipython3", |
| 340 | + "version": "3.6.6" |
| 341 | + } |
| 342 | + }, |
| 343 | + "nbformat": 4, |
| 344 | + "nbformat_minor": 2 |
| 345 | +} |
0 commit comments