layout | title | permalink |
---|---|---|
page |
Publications |
/publications/ |
^ Indicates publication transitional with ProSPect project.
- Jakeman, J. D., Perego, M., Seidl, D. T., Hartland, T. A., Hillebrand, T. R., Hoffman, M. J., and Price, S. F. 2024. [An evaluation of multi-fidelity methods for quantifying uncertainty in projections of ice-sheet mass-change] EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2209
-
Jantre, S., Hoffman, M. J., Urban, N. M., Hillebrand, T., Perego, M., Price, S., and Jakeman, J. D. 2024. [Probabilistic projections of the Amery Ice Shelf catchment, Antarctica, under conditions of high ice-shelf basal melt] The Cryosphere 18 5207–5238, https://doi.org/10.5194/tc-18-5207-2024
-
Seroussi, Helene L, Tyler Pelle, William H. Lipscomb, Ayako Abe‐Ouchi, Torsten Albrecht, Jorge Alvarez‐Solas, Xylar Asay‐Davis, et al. 2024. [Evolution Of The Antarctic Ice Sheet Over The Next Three Centuries From An Ismip6 Model Ensemble] Earth's Future 12 (9). https://doi.org/10.1029/2024ef004561
-
Antepara, O., Williams, S., Carlson, M., & Watkins, J. 2024. [Performance Portable Optimizations of an Ice-sheet Modeling Code on GPU-supercomputers] In SC24-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1141-1151). IEEE. https://doi.org/10.1109/SCW63240.2024.00156
-
Whicker-Clarke, C. A., R. Antwerpen, M. G. Flanner, A. Schneider, M. Tedesco, M., and C. S. Zender. 2024. [The effect of physically based ice radiative processes on Greenland ice sheet albedo and surface mass balance in E3SM] J. Geophys. Res. Atm. 129 e2023JD040241, https://doi.org/10.1029/2023JD040241
-
Ray H Watkins, Jeremy N Bassis, MD Thouless, and Adrian Luckman. 2024. [High basal melt rates and high strain rates lead to more fractured ice] Journal of Geophysical Research: Earth Surface 129 (4): 1-16. https://doi.org/10.1029/2023JF007366
-
^ Reese, William, Joseph Hart, Bart van Bloemen Waanders, Mauro Perego, John Jakeman, and Arvind Saibaba. 2024. [Hyper-Differential Sensitivity Analysis in the Context of Bayesian Inference Applied to Ice-Sheet Problems] International Journal for Uncertainty Quantification 14 3. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2023047605
-
Bassis, Jeremy N., and Samuel B. Kachuck. 2023. [Beyond the Stokes Approximation: Shallow Visco-Elastic Ice-Sheet Models] Journal of Glaciology September, 1–12. https://doi.org/10.1017/jog.2023.75.
-
Hill, Tim, Gwenn Elizabeth Flowers, Matthew James Hoffman, Derek Bingham, and Mauro Angelo Werder. 2023. [Improved Representation of Laminar and Turbulent Sheet Flow in Subglacial Drainage Models] Journal of Glaciology December, 1–14. https://doi.org/10.1017/jog.2023.103
-
Seroussi, Hélène, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, et al. 2023. [Insights into the Vulnerability of Antarctic Glaciers from the ISMIP6 Ice Sheet Model Ensemble and Associated Uncertainty] The Cryosphere 17 (12): 5197–5217. https://doi.org/10.5194/tc-17-5197-2023
-
Muruganandham, S., A. A. Robel, M. J. Hoffman, and S. Price. 2023. [Statistical Generation of Ocean Forcing with Spatiotemporal Variability for Ice Sheet Models] Computing in Science & Engineering 01 (August): 1–12. https://doi.org/10.1109/MCSE.2023.3300908.
-
Schneider, A., C. S. Zender, N. L. Loeb, and S. F. Price. 2023. [Use of Shallow Ice Core Measurements to Evaluate and Constrain 1980-1990 Global Reanalyses of Ice Sheet Precipitation Rates] Geophysical Research Letters 50 (19), e2023GL103943, https://doi.org/10.1029/2023GL103943
-
^ Berdahl, Mira, Gunter Leguy, William H. Lipscomb, Nathan M. Urban, and Matthew J. Hoffman. 2023. [Exploring Ice Sheet Model Sensitivity to Ocean Thermal Forcing and Basal Sliding Using the Community Ice Sheet Model (CISM)] The Cryosphere 17 (4) 1513–43. https://doi.org/10.5194/tc-17-1513-2023
-
^ Laffin, M. K., C. S. Zender, J. M. van Wessem, B. Noël, and W. Wang. 2023. [Wind-associated melt trends and contrasts between the Greenland and Antarctic Ice Sheets] Geophys. Res. Lett. 50 (16), e2023GL102828, https://doi.org/10.1029/2023GL102828.
-
^ Hartland, Tucker, Georg Stadler, Mauro Perego, Kim Liegeois, and Noemi Petra. 2023. [Hierarchical Off-Diagonal Low-Rank Approximation of Hessians in Inverse Problems, with Application to Ice Sheet Model Initialization] Inverse Problems 39 https://dx.doi.org/10.1088/1361-6420/acd719
-
^ He, QiZhi, Mauro Perego, Amanda A. Howard, George Em Karniadakis, and Panos Stinis. 2023. [A Hybrid Deep Neural Operator/Finite Element Method for Ice-Sheet Modeling] Journal of Computational Physics https://doi.org/10.1016/j.jcp.2023.112428
-
^ Howard, Amanda A., Mauro Perego, George E. Karniadakis, and Panos Stinis. 2023. [Multifidelity Deep Operator Networks] Journal of Computational Physics 493 https://doi.org/10.1016/j.jcp.2023.112462
-
^ Liegeois, Kim, Mauro Perego, and Tucker Hartland. 2023. PyAlbany: A Python Interface to the C++ Multiphysics Solver Albany Journal of Computational and Applied Mathematics 425: 115037. https://doi.org/10.1016/j.cam.2022.115037
-
^ Carlson, M., Watkins, J., & Tezaur, I. 2023. [Automatic performance tuning for Albany Land Ice] Journal of Computational and Applied Mathematics 429 115222. https://doi.org/10.1016/j.cam.2023.115222
-
^ Watkins, Jerry, Max Carlson, Kyle Shan, Irina Tezaur, Mauro Perego, Luca Bertagna, Carolyn Kao, Matthew J. Hoffman, and Stephen F. Price. 2022. [Performance Portable Ice-Sheet Modeling with MALI] The International Journal of High Performance Computing Applications 37 (5), 600-625. https://doi.org/10.1177/10943420231183688
-
^ Hager, Alexander O, Matthew J Hoffman, Stephen F Price, and Dustin M Schroeder. 2022. Persistent, Extensive Channelized Drainage Modeled beneath Thwaites Glacier, West Antarctica The Cryosphere 16 (9): 3575–99. doi.org/10.5194/tc-16-3575-2022.
-
^ Hillebrand, T. R., Hoffman, M. J., Perego, M., Price, S. F., & Howat, I. M. 2022. [The contribution of Humboldt Glacier, northern Greenland, to sea-level rise through 2100 constrained by recent observations of speedup and retreat] The Cryosphere 16 (11): 4679-4700. https://doi.org/10.5194/tc-16-4679-2022.
Last updated Jan. 24, 2025