-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraffic.py
150 lines (124 loc) · 6.86 KB
/
traffic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# ### Traffic simulation with OSMnx and UXsim
# - [OSMnx](https://www.github.com/gboeing/osmnx)
# - [UXsim](https://www.github.com/toruseo/uxsim)
from data import data
import random
from collections import defaultdict
import osmnx as ox
import uxsim
data1 = data
# print(f"UXsim version: {uxsim.__version__}")
def get_uxsim_world(save_mode=False, show_mode=False, uxsim_platoon_size=10, policy_speed_reduction=0, policy_polygon=None):
city_name = "Rotterdam"
surrounding_area_name = "South Holland"
road_network = ox.load_graphml("../network/graphs/merged_network.graphml")
network_crs = road_network.graph['crs']
# Convert the policy_polygon to the network_crs
if policy_polygon is not None:
policy_polygon = policy_polygon.to_crs(network_crs)
policy_polygon = policy_polygon.geometry[0]
# Print number of nodes and edges
print(f"Number of nodes: {len(road_network.nodes)}\nNumber of edges: {len(road_network.edges)}")
# ### UXsim model
# Initialize the simulation environment (World)
# Set simulation parameters
simulation_name = "trafficsim"
simulation_duration = (24-5)*3600 # in seconds (e.g., 3600 = 1 hour)
reaction_time = 1 # in seconds
duo_update_time = 300 # in seconds, for dynamic user equilibrium (DUO) route choice update
duo_update_weight = 0.5 # weight for DUO update
duo_noise = 0.01 # noise for DUO route choice to prevent identical choices
eular_dt = 60 # in seconds, for Eulerian traffic state computation
eular_dx = 50 # in meters, for Eulerian traffic state computation
random_seed = 42 # for reproducibility
# Create the World object with the specified parameters
world = uxsim.World(name=simulation_name,
deltan=uxsim_platoon_size, # vehicles per platoon
reaction_time=reaction_time,
duo_update_time=duo_update_time,
duo_update_weight=duo_update_weight,
duo_noise=duo_noise,
eular_dt=eular_dt,
eular_dx=eular_dx,
random_seed=random_seed,
print_mode=1, # Enable printing simulation progress
save_mode=save_mode, # Enable saving simulation results
show_mode=show_mode, # Enable showing results via matplotlib (for faster performance)
route_choice_principle="homogeneous_DUO",
show_progress=1, # Show simulation progress
show_progress_deltat=300, # Interval for showing progress, in seconds
tmax=simulation_duration, # Maximum simulation time
vehicle_logging_timestep_interval=-1, # Log no vehicle data
reduce_memory_delete_vehicle_route_pref=True,
)
# Helper function to determine max density based on road type and number of lanes
def calculate_max_density(road_type, network_name):
# If road type is a list, take the most common value
if isinstance(road_type, list):
road_type = max(set(road_type), key=road_type.count)
default_density = 0.17 # Default maximum density in vehicles per meter per lane
if network_name == surrounding_area_name:
return 1 # We don't care about the density in the surrounding area.
if road_type in ['motorway', 'trunk', 'motorway_link', 'trunk_link']:
return 0.14 # Lower density due to higher speeds and longer headways
elif road_type in ['primary', 'primary_link']:
return 0.16
elif road_type in ['secondary', 'secondary_link']:
return 0.18
elif road_type in ['residential', 'tertiary', 'tertiary_link']:
return 0.20 # Higher density due to lower speeds
else:
return default_density # Default for unspecified or other road types
# Create Nodes in UXsim from OSMnx graph nodes.
world.node_pc4_dict = defaultdict(list)
for pc4 in data1.city_pc4s:
world.node_pc4_dict[pc4] = []
world.node_mrdh65_dict = defaultdict(list)
for node_id, data in road_network.nodes(data=True):
pc4 = int(data['postcode'])
try:
mrdh65 = data1.pc4_to_mrdh65[pc4]
except KeyError:
mrdh65 = 0
node = world.addNode(name=str(node_id), x=data['x'], y=data['y'], attribute=mrdh65)
world.node_pc4_dict[pc4].append(node)
world.node_mrdh65_dict[mrdh65].append(node)
# If any pc4 has no nodes, add the mrdh65 nodes to the pc4 nodes
for pc4, nodes in world.node_pc4_dict.items():
if not nodes:
# Add the mrdh65 nodes to the pc4 nodes
world.node_pc4_dict[pc4] = world.node_mrdh65_dict[data1.pc4_to_mrdh65_city[pc4]]
reduce_speeds = policy_speed_reduction > 0
world.reduced_link_speeds = 0
for u, v, data in road_network.edges(data=True):
start_node_name = str(u)
end_node_name = str(v)
osmid = data['osmid']
length = data['length'] # Assuming 'length' attribute exists
# Assuming 'speed' attribute exists, convert speed from km/h to m/s
speed_limit = data.get('speed_kph', 50)
# If speed limit is a list, sort and take the median value
if isinstance(speed_limit, list):
speed_limit = sorted(speed_limit)[len(speed_limit) // 2]
# Calculate max density based on road type and lanes
road_type = data.get('highway', '')
network_name = data.get('network', '')
max_density = calculate_max_density(road_type, network_name)
if reduce_speeds and random.random() < policy_speed_reduction and data["geometry"].centroid.within(policy_polygon):
speed_limit = max(20, speed_limit - 20) # Reduce speed limit by 20 km/h with a minimum of 20 km/h
max_density += 0.02
world.reduced_link_speeds += 1
speed_limit = speed_limit * 1000 / 3600 # km/h to m/s
priority = 1 # Example value
# Get the lanes
lanes = data.get('lanes', 1)
# If lanes is a list, take the minimum value, and convert to int
lanes = min(lanes) if isinstance(lanes, list) else lanes
lanes = int(lanes)
world.addLink(name=f"{u}_{v}_{osmid}", start_node=start_node_name, end_node=end_node_name, length=length,
free_flow_speed=speed_limit, jam_density_per_lane=max_density, merge_priority=priority, number_of_lanes=lanes)
if world.reduced_link_speeds > 0:
print(f"Reduced speed on {world.reduced_link_speeds} of {len(road_network.edges)} links ({world.reduced_link_speeds / len(road_network.edges):.2%})")
# Assuming 'world' is your UXsim world and it has been populated with nodes and links as per previous steps
nodes = {node.name: node for node in world.NODES} # List of node names
return world