diff --git a/pypop7/benchmarks/data_science.py b/pypop7/benchmarks/data_science.py index fbf8939c5..07bd09fc8 100644 --- a/pypop7/benchmarks/data_science.py +++ b/pypop7/benchmarks/data_science.py @@ -183,7 +183,7 @@ def __call__(self, w, x, y): def tanh_loss_lr(w, x, y): - """Tanh loss function of logistic regression (LR with binary labels/classes {-1, 1}). + """Tanh loss function of logistic regression (LR with binary class labels {-1, 1}). .. note:: This loss function for binary classification is generally non-convex (non-linear least squares). @@ -191,15 +191,15 @@ def tanh_loss_lr(w, x, y): Parameters ---------- w : ndarray - input vector (weights). + input vector (weights to be optimized). x : ndarray - features in the used train set. + features in the used training set. y : ndarray - labels in the used train set. + class labels in the used training set. Returns ------- - loss/fitness value (`float`). + loss/fitness value to be minimized (`float`). References ----------