-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathutils.py
54 lines (47 loc) · 1.44 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from keras.applications.vgg16 import VGG16, preprocess_input
from keras.layers import MaxPooling2D, AveragePooling2D, Conv2D
from keras.models import Sequential
from load_images import load_content_image, load_style_image
import numpy as np
import cv2
from scipy.optimize import fmin_l_bfgs_b
def VGG16_AvgPool(shape):
vgg16 = VGG16(input_shape=shape, weights='imagenet', include_top=False)
model = Sequential()
for layer in vgg16.layers:
if layer.__class__ == MaxPooling2D:
model.add(AveragePooling2D())
else:
model.add(layer)
return model
def load_and_preprocess_content(shape):
content = load_content_image(shape)
content = np.expand_dims(content, axis=0)
content = preprocess_input(content)
return content
def load_and_preprocess_style(shape):
style = load_style_image(shape)
style = np.expand_dims(style, axis=0)
style = preprocess_input(style)
return style
def unpreprocess(img):
img[..., 0] += 103.939
img[..., 1] += 116.779
img[..., 2] += 126.68
return img
def scale_img(x):
x = x - x.min()
x = x / x.max()
return x
def minimize_loss(fn, epochs, shape):
img = np.random.randn(np.prod(shape))
for i in range(epochs):
img = np.reshape(img, newshape=(1, shape[0], shape[1], 3))
temp = unpreprocess(img[0].copy())
temp = scale_img(temp)
cv2.imshow('img', temp)
cv2.waitKey(2000)
img, l, _ = fmin_l_bfgs_b(func=fn, x0=img, maxfun=20)
img = np.clip(img, -127, 127)
print("iteration = %d, loss = %f" %(i, l))
return img