-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathpinecone_question_answering.py
112 lines (84 loc) · 3.83 KB
/
pinecone_question_answering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import pandas as pd
import openai
import numpy as np
import pickle
from transformers import GPT2TokenizerFast
from transformers import AutoTokenizer
import os
import pinecone
from dotenv import load_dotenv
load_dotenv()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
MODEL_NAME = "curie"
openai.api_key = os.getenv("OPENAI_API_KEY")
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
COMPLETIONS_MODEL = "text-davinci-003"
# QUERY_EMBEDDINGS_MODEL = f"text-search-{MODEL_NAME}-query-001"
QUERY_EMBEDDINGS_MODEL = "text-embedding-ada-002"
MAX_SECTION_LEN = 3000
SEPARATOR = "\n* "
NO_KNOWLEDGE_STRING = "Sorry, I don't know. I can only construct a response based on transcripts from Huberman Lab episodes and I can't find an answer. If it's helpful, my corpus only includes episodes where Dr. Huberman appears alone. I currently can't parse interview episodes."
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
separator_len = len(tokenizer.tokenize(SEPARATOR))
COMPLETIONS_API_PARAMS = {
# We use temperature of 0.0 because it gives the most predictable, factual answer.
"temperature": 0.0,
"max_tokens": 300,
"model": COMPLETIONS_MODEL,
}
def request_pinecone_documents(query: str):
"""
Find the query embedding for the supplied query, and compare it against all of the pre-calculated document embeddings
to find the most relevant sections.
Return the list of document sections, sorted by relevance in descending order.
"""
pinecone.init(
api_key= PINECONE_API_KEY,
environment="us-west1-gcp"
)
xq = openai.Embedding.create(input=query, engine=QUERY_EMBEDDINGS_MODEL)['data'][0]['embedding']
index = pinecone.Index('transcripts')
res = index.query([xq], top_k=5, include_metadata=True, namespace='hubermanlab')
return res["matches"]
def construct_prompt(question: str) -> str:
"""
Fetch relevant
"""
most_relevant_document_sections = request_pinecone_documents(question)
chosen_sections = []
chosen_sections_len = 0
chosen_sections_indexes = []
sources = []
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
for section_index in most_relevant_document_sections:
# Add contexts until we run out of space.
# document_section = df.loc[section_index]
document_section = section_index['metadata']['text']
title = section_index['metadata']['episode_title']
position = float(section_index['metadata']['position'])
chosen_sections_len += len(tokenizer.tokenize(document_section)) + separator_len
if chosen_sections_len > MAX_SECTION_LEN:
break
chosen_sections.append(SEPARATOR + document_section.replace("\n", " "))
chosen_sections_indexes.append(str(section_index))
sources.append({"title": title, "position": position, "text": document_section})
# Useful diagnostic information
# print(f"Selected {len(chosen_sections)} document sections:")
# print("\n".join(chosen_sections_indexes))
header = f"""Answer the question as truthfully as possible based on the context given below, and if you're unsure of the answer from the context, say "{NO_KNOWLEDGE_STRING}".\n\nContext:\n"""
prompt = header + "".join(chosen_sections) + "\n\n Q: " + question + "\n A:"
print("Prompt: " + prompt)
return {"prompt": prompt, "sources": sources}
def answer_question(question: str) -> str:
res = construct_prompt(question)
"""
Generate an answer to the supplied question.
"""
response = openai.Completion.create(
prompt=res["prompt"],
**COMPLETIONS_API_PARAMS
)
sources = res["sources"]
if response["choices"][0]["text"].find(NO_KNOWLEDGE_STRING) != -1:
sources = []
return {"answer": response["choices"][0]["text"], "sources": sources}