-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
235 lines (175 loc) · 5.41 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from flask import Flask, render_template, flash, redirect, url_for, request
from wtforms import Form, StringField, validators
from csv import reader
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
from math import log10, sqrt
from collections import OrderedDict
app = Flask(__name__)
def getMatrix(docs, terms):
'''returns the tf-idf matrix'''
keys = list(docs.keys())
N = len(docs)
matrix = []
for k in range(N):
i = keys[k]
l = []
for j in terms:
n = len(terms[j])
if i in terms[j]:
l.append(log10(1+terms[j][i]) * log10(N/n))
else:
l.append(0)
c = sqrt(sum(map(lambda x: x*x, l)))
for i in range(len(l)):
l[i] = l[i]/c
matrix.append(l)
return matrix
def readData():
'''to read data from the dataset and load it into Data Structures'''
f = open('bible_data_set.csv', 'r')
k = reader(f)
l = 0
docs = {}
all_terms_list = []
all_real_terms_list = []
for i in k:
print(l)
l += 1
if l == 1:
continue
doc_name = i[0]
terms_list = list(map(lambda x: PorterStemmer().stem(x), word_tokenize(i[4] + i[1])))
real_terms_list = word_tokenize(i[4])
all_terms_list += terms_list
all_real_terms_list += real_terms_list
docs[doc_name] = terms_list
if l==10000:
break
f.close()
k = 0
terms = {}
all_terms_list = list(set(all_terms_list))
all_real_terms_list = set(all_real_terms_list)
for i in all_terms_list:
doc_list = []
for j in docs:
if i in docs[j]:
doc_list.append((j, docs[j].count(i)))
print(k)
k += 1
terms[i] = dict(doc_list)
docs = OrderedDict(docs)
matrix = getMatrix(docs, terms)
return docs, terms, matrix, all_real_terms_list
docs, terms, matrix, real_terms = readData()
N = len(docs)
def editDistance(s1, s2, m, n):
'''returns the minimum number operations to convert string-s1 to string-s2'''
dp = [[0 for x in range(n+1)] for x in range(m+1)]
for i in range(m+1):
for j in range(n+1):
if i==0:
dp[i][j] = j
elif j==0:
dp[i][j] = i
elif s1[i-1]==s2[j-1]:
dp[i][j] = dp[i-1][j-1]
else:
dp[i][j] = 1 + min(dp[i][j-1], dp[i-1][j-1], dp[i-1][j])
return dp[m][n]
def getMinWord(terms, word):
'''returns a term in terms which requires least number of operations to convert to given word'''
minimum = 99999999999
minWord = word
for i in terms:
k = editDistance(i, word, len(i), len(word))
if k < minimum:
minWord = i
minimum = k
return minWord
def getSuffix(terms, word):
'''returns a term in terms whose suffix is the given word'''
for i in terms:
if i.find(word)==0:
return True, i
return False, word
def getResults(query):
'''Returns the top relevent results for the query'''
search = ''
for i in query.split(' '):
if PorterStemmer().stem(i) in terms:
search += i + ' '
else:
result, word = getSuffix(real_terms, i)
if result == True:
search += word + ' '
else:
search += getMinWord(real_terms, i) + ' '
search = search.strip()
queryTermsList = list(map(PorterStemmer().stem , word_tokenize(search)))
q = []
for i in terms:
n = len(terms[i])
q.append(log10(1+queryTermsList.count(i)) * log10(N+1/n))
c = sqrt(sum(map(lambda x: x*x, q)))
for i in range(len(q)):
q[i] = q[i]/c
def multiply(a, b):
'''returns the sum of the product of the corresponding elements in both the lists'''
su = 0
for i in range(len(a)):
su += a[i] * b[i]
return su
ranks = {}
k = 0
keys = list(docs.keys())
for j in matrix:
ranks[keys[k]] = multiply(j, q)
k += 1
results = sorted(ranks, key = lambda x: ranks[x], reverse = True)[:10]
return results, search
def getDocDetails(docname):
'''returns the document with the (docname)'''
f = open('bible_data_set.csv', 'r')
k = reader(f)
l = 0
for i in k:
print(l)
l += 1
if l == 1:
continue
doc_name = i[0]
if docname == doc_name:
f.close()
return i[0], i[1], i[2], i[3], i[4]
class SearchForm(Form):
'''Form class to support WTForms in Flask'''
search = StringField('Search for...', [validators.InputRequired()])
@app.route('/searchResults/<string:query>', methods = ['GET', 'POST'])
def searchResults(query):
'''returns the page with the top 10 relevant search results'''
results, real_search = getResults(query)
form = SearchForm(request.form)
if request.method == 'POST' and form.validate():
search = form.search.data
return redirect(url_for('searchResults', query = search))
if query != real_search:
flash('Showing results for ' + real_search, 'success')
return render_template('searchResults.html', results = results, form = form)
@app.route('/displayDoc/<string:docname>')
def displayDoc(docname):
'''returns the document with given docname'''
citation, book, chapter, verse, text = getDocDetails(docname)
return render_template('document.html', citation = citation, book = book, chapter = chapter, verse = verse, text = text)
@app.route('/', methods = ['GET', 'POST'])
def index():
'''returns the home page with search bar'''
form = SearchForm(request.form)
if request.method == 'POST' and form.validate():
search = form.search.data
return redirect(url_for('searchResults', query = search, form = form))
return render_template("home.html", form = form)
if __name__ == '__main__':
app.secret_key = '528491@JOKER'
app.run()