forked from wangnan31415926/bip39-BIP32-BIP44
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransaction.cpp
301 lines (249 loc) · 9.02 KB
/
Transaction.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#include "includeall.h"
unsigned char master_node[NODE_LENGTH];
///** The maximum size of a transaction (in bytes) which parseTransaction()
// * is prepared to handle. */
//#define MAX_TRANSACTION_SIZE 2000000
///** The maximum number of inputs that the transaction parser is prepared
// * to handle. This should be small enough that a transaction with the
// * maximum number of inputs is still less than #MAX_TRANSACTION_SIZE bytes in
// * size.
// * \warning This must be < 65536, otherwise an integer overflow may occur.
// */
//#define MAX_INPUTS 5000
///** The maximum number of outputs that the transaction parser is prepared
// * to handle. This should be small enough that a transaction with the
// * maximum number of outputs is still less than #MAX_TRANSACTION_SIZE bytes
// * in size.
// * \warning This must be < 65536, otherwise an integer overflow may occur.
// */
//#define MAX_OUTPUTS 2000
//
///** The maximum amount that can appear in an output, stored as a little-endian
// * multi-precision integer. This represents 21 million BTC. */
//static const uint8_t max_money[] = {
//0x00, 0x40, 0x07, 0x5A, 0xF0, 0x75, 0x07, 0x00};
/**
* \defgroup DEROffsets Offsets for DER signature encapsulation.
*
* @{
*/
/** Initial offset of r in signature. It's 4 because 4 bytes are needed for
* the SEQUENCE/length and INTEGER/length bytes. */
#define R_OFFSET 4
/** Initial offset of s in signature. It's 39 because: r is initially 33
* bytes long, and 2 bytes are needed for INTEGER/length. 4 + 33 + 2 = 39. */
#define S_OFFSET 39
/**@}*/
/** Encapsulate an ECDSA signature in the DER format which OpenSSL uses.
* This function does not fail.
* \param signature This must be a byte array with space for at
* least #MAX_SIGNATURE_LENGTH bytes. On exit, the
* encapsulated signature will be written here.
* \param r The r value of the ECDSA signature. This should be a 32 byte
* little-endian multi-precision integer.
* \param s The s value of the ECDSA signature. This should be a 32 byte
* little-endian multi-precision integer.
* \return The length of the signature, in number of bytes.
*/
static uint8_t encapsulateSignature(uint8_t *signature, BigNum256 r, BigNum256 s)
{
uint8_t sequence_length;
uint8_t i;
memcpy(&(signature[R_OFFSET + 1]), r, 32);
memcpy(&(signature[S_OFFSET + 1]), s, 32);
// Place an extra leading zero in front of r and s, just in case their
// most significant bit is 1.
// Integers in DER are always 2s-complement signed, but r and s are
// non-negative. Thus if the most significant bit of r or s is 1,
// a leading zero must be placed in front of the integer to signify that
// it is non-negative.
// If the most significant bit is not 1, the extraneous leading zero will
// be removed in a check below.
signature[R_OFFSET] = 0x00;
signature[S_OFFSET] = 0x00;
// Integers in DER are big-endian.
swapEndian256(&(signature[R_OFFSET + 1]));
swapEndian256(&(signature[S_OFFSET + 1]));
sequence_length = 0x46; // 2 + 33 + 2 + 33
signature[R_OFFSET - 2] = 0x02; // INTEGER
signature[R_OFFSET - 1] = 0x21; // length of INTEGER
signature[S_OFFSET - 2] = 0x02; // INTEGER
signature[S_OFFSET - 1] = 0x21; // length of INTEGER
signature[S_OFFSET + 33] = 0x01; // hashtype
// According to DER, integers should be represented using the shortest
// possible representation. This implies that leading zeroes should
// always be removed. The exception to this is that if removing the
// leading zero would cause the value of the integer to change (eg.
// positive to negative), the leading zero should remain.
// Remove unncecessary leading zeroes from s. s is pruned first
// because pruning r will modify the offset where s begins.
while ((signature[S_OFFSET] == 0) && ((signature[S_OFFSET + 1] & 0x80) == 0))
{
for (i = S_OFFSET; i < 72; i++)
{
signature[i] = signature[i + 1];
}
sequence_length--;
signature[S_OFFSET - 1]--;
if (signature[S_OFFSET - 1] == 1)
{
break;
}
}
// Remove unnecessary leading zeroes from r.
while ((signature[R_OFFSET] == 0) && ((signature[R_OFFSET + 1] & 0x80) == 0))
{
for (i = R_OFFSET; i < 72; i++)
{
signature[i] = signature[i + 1];
}
sequence_length--;
signature[R_OFFSET - 1]--;
if (signature[R_OFFSET - 1] == 1)
{
break;
}
}
signature[0] = 0x30; // SEQUENCE
signature[1] = sequence_length; // length of SEQUENCE
// 3 extra bytes: SEQUENCE/length and hashtype
return (uint8_t)(sequence_length + 3);
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Sign a transaction. This should be called after the transaction is parsed
* and a signature hash has been computed. The primary purpose of this
* function is to call ecdsaSign() and encapsulate the ECDSA signature in
* the DER format which OpenSSL uses.
* \param signature The encapsulated signature will be written here. This
* must be a byte array with space for
* at least #MAX_SIGNATURE_LENGTH bytes.
* \param out_length The length of the signature, in number of bytes, will be
* written here (on success). This length includes the hash
* type byte.
* \param sig_hash The signature hash of the transaction (see
* parseTransaction()).
* \param private_key The private key to sign the transaction with. This must
* be a 32 byte little-endian multi-precision integer.
* \return false on success, or true if an error occurred while trying to
* obtain a random number.
*/
void signTransaction(uint8_t *signature, uint8_t *out_length, BigNum256 sig_hash, BigNum256 private_key)
{
uint8_t r[32];
uint8_t s[32];
*out_length = 0;
ecdsaSign(r, s, sig_hash, private_key);
*out_length = encapsulateSignature(signature, r, s);
}
/////////////////////////////////////////////////////////
bool b58enc(unsigned char *b58, unsigned short *b58sz, unsigned char *data, unsigned short binsz)
{
unsigned char *bin = data;
int carry=0;
unsigned short i, j, high, zcount = 0;
unsigned short size=0;
i=0;
j=0;
high=0;
while (zcount < binsz && !bin[zcount])
++zcount;
size = (binsz - zcount) * 138 / 100 + 1;
uint8_t buf[200];
memset(buf, 0, size);
for (i = zcount, high = size - 1; i < binsz; ++i, high = j)
{
for (carry = bin[i], j = size - 1; (j > high) || carry; --j)
{
carry += 256 * buf[j];
buf[j] = carry % 58;
carry /= 58;
}
}
for (j = 0; j < size && !buf[j]; ++j);
// if (*b58sz <= zcount + size - j)
// {
// *b58sz = zcount + size - j + 1;
// return false;
// }
if (zcount)
{memset(b58, '1', zcount);}
for (i = zcount; j < size; ++i, ++j)
{b58[i] =base58_char_list[buf[j]];}
b58[i] = '\0';
*b58sz = i + 1;
return true;
}
void base58Decode(uint8_t *out, const char *in, const unsigned int len)
{
unsigned int i;
unsigned int j;
unsigned int digit;
unsigned int carry;
unsigned int result;
memset(out, 0, SERIALISED_BIP32_KEY_LENGTH);
for (i = 0; i < len; i++)
{
digit = 0;
for (j = 0; j < 58; j++)
{
if (in[i] == base58_char_list[j])
{
digit = j;
break;
}
}
// multiply by 58
carry = 0;
for (j = 0; j < SERIALISED_BIP32_KEY_LENGTH; j++)
{
result = (unsigned int)out[j] * 58 + carry;
out[j] = (uint8_t)result;
carry = result >> 8;
}
// add digit
carry = 0;
for (j = 0; j < SERIALISED_BIP32_KEY_LENGTH; j++)
{
result = (unsigned int)out[j] + carry;
if (j == 0)
{
result += digit;
}
out[j] = (uint8_t)result;
carry = result >> 8;
}
}
}
/**************************************
函数名称:将解析出的公钥地址进行base58chaeck转换
入参: buf 公钥存储首地址(20字节),out base58check数据存储地址,outlength 输出数据长度
**************************************/
void HextoBase58check(unsigned char* buf,unsigned char* base58check,unsigned short* outlength)
{
unsigned char p[25]={0}; //数据组织缓冲区
memcpy(&p[1],buf,20);
sha256_double(p,21);
memcpy(&p[21],(unsigned char*)sha256_h,4); //取hash结果前4字节
b58enc(base58check,outlength,p,25); //base58转换
}
///********************************************
//函数名称:双hash,sha256^2
//入参:bufIN 数据首地址,length 数据长度
//hash结果保存在h中
//********************************************/
//void sha256_double(unsigned char* bufIN,unsigned short length)
//{
// unsigned char i;
//
// sha256(bufIN,length);
// for(i=0;i<8;i++) //对结果进行从小端->大端转换
// {
// BigendChang((unsigned char*)(&sha256_h[i]),4);
// }
// sha256((unsigned char*)sha256_h,32); //再次做hash sha256
// for(i=0;i<8;i++) //对结果进行从小端->大端转换
// {
// BigendChang((unsigned char*)(&sha256_h[i]),4);
// }
//
//}