diff --git a/MillerRabin/README.md b/MillerRabin/README.md
new file mode 100644
index 0000000..5c22c08
--- /dev/null
+++ b/MillerRabin/README.md
@@ -0,0 +1,19 @@
+# Miller-Rabin algorithm
+
+## Description.
+An algorigthm to check if a given number ``n`` is prime.
+If the algorithm returns inconclusive, it means that ``n`` is not prime,
+otherwise if algorithm returns composite, it means that ``n`` might be prime.
+
+### PseudoCode
+
+```
+Test(n)
+1. Find integers k, q, with k > 0, q odd, so that (n - 1 = (2^k)q;
+2. Select a random integer a, 1 < a < n - 1;
+3. If (a^q)mod n == 1 then return ("inconclusive");
+4. For j = 0 to k - 1 do
+4.1 If (a^(2^j)q)mod n = n - 1 then return ("inconclusive");
+5. Return ("composite");
+```
+