-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
44 lines (32 loc) · 1.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
from torch.utils.data import Dataset, DataLoader
import cv2
import os
from tqdm import tqdm
class MyDataSet(Dataset):
def __init__(self, images_path):
self.imglist = os.listdir(images_path)
self.images = []
for img in tqdm(self.imglist):
image = cv2.imread(os.path.join(images_path, img))
image = image.transpose(2, 0, 1)
image = torch.from_numpy(image).float() / 255.0
self.images.append(image)
def __getitem__(self, index):
return self.images[index]
def __len__(self):
return len(self.images)
@staticmethod
def collate_fn(batch):
images = tuple(zip(*batch))
images = torch.stack(images, dim=0)
return images
def pic_preprocess(raw_pics, pics, size):
i = 0
for filename in tqdm(os.listdir(raw_pics)):
img = cv2.imread(raw_pics + '/' + filename)
img = cv2.resize(img, size)
cv2.imwrite(pics + '/' + str(i) + ".jpg", img)
i += 1
if __name__ == '__main__':
pic_preprocess("raw_pics", "pics", (64, 64))