forked from isaac-sim/IsaacGymEnvs
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfactory_control.py
419 lines (326 loc) · 20.1 KB
/
factory_control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# Copyright (c) 2021-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Factory: control module.
Imported by base, environment, and task classes. Not directly executed.
"""
import math
import torch
from isaacgymenvs.utils import torch_jit_utils as torch_utils
def compute_dof_pos_target(cfg_ctrl,
arm_dof_pos,
fingertip_midpoint_pos,
fingertip_midpoint_quat,
jacobian,
ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat,
ctrl_target_gripper_dof_pos,
device):
"""Compute Franka DOF position target to move fingertips towards target pose."""
ctrl_target_dof_pos = torch.zeros((cfg_ctrl['num_envs'], 9), device=device)
pos_error, axis_angle_error = get_pose_error(
fingertip_midpoint_pos=fingertip_midpoint_pos,
fingertip_midpoint_quat=fingertip_midpoint_quat,
ctrl_target_fingertip_midpoint_pos=ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat=ctrl_target_fingertip_midpoint_quat,
jacobian_type=cfg_ctrl['jacobian_type'],
rot_error_type='axis_angle')
delta_fingertip_pose = torch.cat((pos_error, axis_angle_error), dim=1)
delta_arm_dof_pos = _get_delta_dof_pos(delta_pose=delta_fingertip_pose,
ik_method=cfg_ctrl['ik_method'],
jacobian=jacobian,
device=device)
ctrl_target_dof_pos[:, 0:7] = arm_dof_pos + delta_arm_dof_pos
ctrl_target_dof_pos[:, 7:9] = ctrl_target_gripper_dof_pos # gripper finger joints
return ctrl_target_dof_pos
def compute_dof_torque(cfg_ctrl,
dof_pos,
dof_vel,
fingertip_midpoint_pos,
fingertip_midpoint_quat,
fingertip_midpoint_linvel,
fingertip_midpoint_angvel,
left_finger_force,
right_finger_force,
jacobian,
arm_mass_matrix,
ctrl_target_gripper_dof_pos,
ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat,
ctrl_target_fingertip_contact_wrench,
device):
"""Compute Franka DOF torque to move fingertips towards target pose."""
# References:
# 1) https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf
# 2) Modern Robotics
dof_torque = torch.zeros((cfg_ctrl['num_envs'], 9), device=device)
if cfg_ctrl['gain_space'] == 'joint':
pos_error, axis_angle_error = get_pose_error(
fingertip_midpoint_pos=fingertip_midpoint_pos,
fingertip_midpoint_quat=fingertip_midpoint_quat,
ctrl_target_fingertip_midpoint_pos=ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat=ctrl_target_fingertip_midpoint_quat,
jacobian_type=cfg_ctrl['jacobian_type'],
rot_error_type='axis_angle')
delta_fingertip_pose = torch.cat((pos_error, axis_angle_error), dim=1)
# Set tau = k_p * joint_pos_error - k_d * joint_vel_error (ETH eq. 3.72)
delta_arm_dof_pos = _get_delta_dof_pos(delta_pose=delta_fingertip_pose,
ik_method=cfg_ctrl['ik_method'],
jacobian=jacobian,
device=device)
dof_torque[:, 0:7] = cfg_ctrl['joint_prop_gains'] * delta_arm_dof_pos + \
cfg_ctrl['joint_deriv_gains'] * (0.0 - dof_vel[:, 0:7])
if cfg_ctrl['do_inertial_comp']:
# Set tau = M * tau, where M is the joint-space mass matrix
arm_mass_matrix_joint = arm_mass_matrix
dof_torque[:, 0:7] = (arm_mass_matrix_joint @ dof_torque[:, 0:7].unsqueeze(-1)).squeeze(-1)
elif cfg_ctrl['gain_space'] == 'task':
task_wrench = torch.zeros((cfg_ctrl['num_envs'], 6), device=device)
if cfg_ctrl['do_motion_ctrl']:
pos_error, axis_angle_error = get_pose_error(
fingertip_midpoint_pos=fingertip_midpoint_pos,
fingertip_midpoint_quat=fingertip_midpoint_quat,
ctrl_target_fingertip_midpoint_pos=ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat=ctrl_target_fingertip_midpoint_quat,
jacobian_type=cfg_ctrl['jacobian_type'],
rot_error_type='axis_angle')
delta_fingertip_pose = torch.cat((pos_error, axis_angle_error), dim=1)
# Set tau = k_p * task_pos_error - k_d * task_vel_error (building towards eq. 3.96-3.98)
task_wrench_motion = _apply_task_space_gains(delta_fingertip_pose=delta_fingertip_pose,
fingertip_midpoint_linvel=fingertip_midpoint_linvel,
fingertip_midpoint_angvel=fingertip_midpoint_angvel,
task_prop_gains=cfg_ctrl['task_prop_gains'],
task_deriv_gains=cfg_ctrl['task_deriv_gains'])
if cfg_ctrl['do_inertial_comp']:
# Set tau = Lambda * tau, where Lambda is the task-space mass matrix
jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2)
arm_mass_matrix_task = torch.inverse(jacobian @ torch.inverse(arm_mass_matrix) @ jacobian_T) # ETH eq. 3.86; geometric Jacobian is assumed
task_wrench_motion = (arm_mass_matrix_task @ task_wrench_motion.unsqueeze(-1)).squeeze(-1)
task_wrench = task_wrench + torch.tensor(cfg_ctrl['motion_ctrl_axes'], device=device).unsqueeze(0) * task_wrench_motion
if cfg_ctrl['do_force_ctrl']:
# Set tau = tau + F_t, where F_t is the target contact wrench
task_wrench_force = torch.zeros((cfg_ctrl['num_envs'], 6), device=device)
task_wrench_force = task_wrench_force + ctrl_target_fingertip_contact_wrench # open-loop force control (building towards ETH eq. 3.96-3.98)
if cfg_ctrl['force_ctrl_method'] == 'closed':
force_error, torque_error = _get_wrench_error(
left_finger_force=left_finger_force,
right_finger_force=right_finger_force,
ctrl_target_fingertip_contact_wrench=ctrl_target_fingertip_contact_wrench,
num_envs=cfg_ctrl['num_envs'],
device=device)
# Set tau = tau + k_p * contact_wrench_error
task_wrench_force = task_wrench_force + cfg_ctrl['wrench_prop_gains'] * torch.cat(
(force_error, torque_error), dim=1) # part of Modern Robotics eq. 11.61
task_wrench = task_wrench + torch.tensor(cfg_ctrl['force_ctrl_axes'], device=device).unsqueeze(
0) * task_wrench_force
# Set tau = J^T * tau, i.e., map tau into joint space as desired
jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2)
dof_torque[:, 0:7] = (jacobian_T @ task_wrench.unsqueeze(-1)).squeeze(-1)
dof_torque[:, 7:9] = cfg_ctrl['gripper_prop_gains'] * (ctrl_target_gripper_dof_pos - dof_pos[:, 7:9]) + \
cfg_ctrl['gripper_deriv_gains'] * (0.0 - dof_vel[:, 7:9]) # gripper finger joints
dof_torque = torch.clamp(dof_torque, min=-100.0, max=100.0)
return dof_torque
def get_pose_error(fingertip_midpoint_pos,
fingertip_midpoint_quat,
ctrl_target_fingertip_midpoint_pos,
ctrl_target_fingertip_midpoint_quat,
jacobian_type,
rot_error_type):
"""Compute task-space error between target Franka fingertip pose and current pose."""
# Reference: https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf
# Compute pos error
pos_error = ctrl_target_fingertip_midpoint_pos - fingertip_midpoint_pos
# Compute rot error
if jacobian_type == 'geometric': # See example 2.9.8; note use of J_g and transformation between rotation vectors
# Compute quat error (i.e., difference quat)
# Reference: https://personal.utdallas.edu/~sxb027100/dock/quat.html
fingertip_midpoint_quat_norm = torch_utils.quat_mul(fingertip_midpoint_quat,
torch_utils.quat_conjugate(fingertip_midpoint_quat))[:, 3] # scalar component
fingertip_midpoint_quat_inv = torch_utils.quat_conjugate(
fingertip_midpoint_quat) / fingertip_midpoint_quat_norm.unsqueeze(-1)
quat_error = torch_utils.quat_mul(ctrl_target_fingertip_midpoint_quat, fingertip_midpoint_quat_inv)
# Convert to axis-angle error
axis_angle_error = axis_angle_from_quat(quat_error)
elif jacobian_type == 'analytic': # See example 2.9.7; note use of J_a and difference of rotation vectors
# Compute axis-angle error
axis_angle_error = axis_angle_from_quat(ctrl_target_fingertip_midpoint_quat)\
- axis_angle_from_quat(fingertip_midpoint_quat)
if rot_error_type == 'quat':
return pos_error, quat_error
elif rot_error_type == 'axis_angle':
return pos_error, axis_angle_error
def _get_wrench_error(left_finger_force,
right_finger_force,
ctrl_target_fingertip_contact_wrench,
num_envs,
device):
"""Compute task-space error between target Franka fingertip contact wrench and current wrench."""
fingertip_contact_wrench = torch.zeros((num_envs, 6), device=device)
fingertip_contact_wrench[:, 0:3] = left_finger_force + right_finger_force # net contact force on fingers
# Cols 3 to 6 are all zeros, as we do not have enough information
force_error = ctrl_target_fingertip_contact_wrench[:, 0:3] - (-fingertip_contact_wrench[:, 0:3])
torque_error = ctrl_target_fingertip_contact_wrench[:, 3:6] - (-fingertip_contact_wrench[:, 3:6])
return force_error, torque_error
def _get_delta_dof_pos(delta_pose, ik_method, jacobian, device):
"""Get delta Franka DOF position from delta pose using specified IK method."""
# References:
# 1) https://www.cs.cmu.edu/~15464-s13/lectures/lecture6/iksurvey.pdf
# 2) https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf (p. 47)
if ik_method == 'pinv': # Jacobian pseudoinverse
k_val = 1.0
jacobian_pinv = torch.linalg.pinv(jacobian)
delta_dof_pos = k_val * jacobian_pinv @ delta_pose.unsqueeze(-1)
delta_dof_pos = delta_dof_pos.squeeze(-1)
elif ik_method == 'trans': # Jacobian transpose
k_val = 1.0
jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2)
delta_dof_pos = k_val * jacobian_T @ delta_pose.unsqueeze(-1)
delta_dof_pos = delta_dof_pos.squeeze(-1)
elif ik_method == 'dls': # damped least squares (Levenberg-Marquardt)
lambda_val = 0.1
jacobian_T = torch.transpose(jacobian, dim0=1, dim1=2)
lambda_matrix = (lambda_val ** 2) * torch.eye(n=jacobian.shape[1], device=device)
delta_dof_pos = jacobian_T @ torch.inverse(jacobian @ jacobian_T + lambda_matrix) @ delta_pose.unsqueeze(-1)
delta_dof_pos = delta_dof_pos.squeeze(-1)
elif ik_method == 'svd': # adaptive SVD
k_val = 1.0
U, S, Vh = torch.linalg.svd(jacobian)
S_inv = 1. / S
min_singular_value = 1.0e-5
S_inv = torch.where(S > min_singular_value, S_inv, torch.zeros_like(S_inv))
jacobian_pinv = torch.transpose(Vh, dim0=1, dim1=2)[:, :, :6] @ torch.diag_embed(S_inv) @ torch.transpose(U, dim0=1, dim1=2)
delta_dof_pos = k_val * jacobian_pinv @ delta_pose.unsqueeze(-1)
delta_dof_pos = delta_dof_pos.squeeze(-1)
return delta_dof_pos
def _apply_task_space_gains(delta_fingertip_pose,
fingertip_midpoint_linvel,
fingertip_midpoint_angvel,
task_prop_gains,
task_deriv_gains):
"""Interpret PD gains as task-space gains. Apply to task-space error."""
task_wrench = torch.zeros_like(delta_fingertip_pose)
# Apply gains to lin error components
lin_error = delta_fingertip_pose[:, 0:3]
task_wrench[:, 0:3] = task_prop_gains[:, 0:3] * lin_error + \
task_deriv_gains[:, 0:3] * (0.0 - fingertip_midpoint_linvel)
# Apply gains to rot error components
rot_error = delta_fingertip_pose[:, 3:6]
task_wrench[:, 3:6] = task_prop_gains[:, 3:6] * rot_error + \
task_deriv_gains[:, 3:6] * (0.0 - fingertip_midpoint_angvel)
return task_wrench
def get_analytic_jacobian(fingertip_quat, fingertip_jacobian, num_envs, device):
"""Convert geometric Jacobian to analytic Jacobian."""
# Reference: https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/rsl-dam/documents/RobotDynamics2018/RD_HS2018script.pdf
# NOTE: Gym returns world-space geometric Jacobians by default
batch = num_envs
# Overview:
# x = [x_p; x_r]
# From eq. 2.189 and 2.192, x_dot = J_a @ q_dot = (E_inv @ J_g) @ q_dot
# From eq. 2.191, E = block(E_p, E_r); thus, E_inv = block(E_p_inv, E_r_inv)
# Eq. 2.12 gives an expression for E_p_inv
# Eq. 2.107 gives an expression for E_r_inv
# Compute E_inv_top (i.e., [E_p_inv, 0])
I = torch.eye(3, device=device)
E_p_inv = I.repeat((batch, 1)).reshape(batch, 3, 3)
E_inv_top = torch.cat((E_p_inv, torch.zeros((batch, 3, 3), device=device)), dim=2)
# Compute E_inv_bottom (i.e., [0, E_r_inv])
fingertip_axis_angle = axis_angle_from_quat(fingertip_quat)
fingertip_axis_angle_cross = get_skew_symm_matrix(fingertip_axis_angle, device=device)
fingertip_angle = torch.linalg.vector_norm(fingertip_axis_angle, dim=1)
factor_1 = 1 / (fingertip_angle ** 2)
factor_2 = 1 - fingertip_angle * 0.5 * torch.sin(fingertip_angle) / (1 - torch.cos(fingertip_angle))
factor_3 = factor_1 * factor_2
E_r_inv = I \
- 1 * 0.5 * fingertip_axis_angle_cross \
+ (fingertip_axis_angle_cross @ fingertip_axis_angle_cross) * factor_3.unsqueeze(-1).repeat((1, 3 * 3)).reshape((batch, 3, 3))
E_inv_bottom = torch.cat((torch.zeros((batch, 3, 3), device=device), E_r_inv), dim=2)
E_inv = torch.cat((E_inv_top.reshape((batch, 3 * 6)), E_inv_bottom.reshape((batch, 3 * 6))), dim=1).reshape((batch, 6, 6))
J_a = E_inv @ fingertip_jacobian
return J_a
def get_skew_symm_matrix(vec, device):
"""Convert vector to skew-symmetric matrix."""
# Reference: https://en.wikipedia.org/wiki/Cross_product#Conversion_to_matrix_multiplication
batch = vec.shape[0]
I = torch.eye(3, device=device)
skew_symm = torch.transpose(torch.cross(vec.repeat((1, 3)).reshape((batch * 3, 3)),
I.repeat((batch, 1)))
.reshape(batch, 3, 3),
dim0=1,
dim1=2)
return skew_symm
def translate_along_local_z(pos, quat, offset, device):
"""Translate global body position along local Z-axis and express in global coordinates."""
num_vecs = pos.shape[0]
offset_vec = offset * torch.tensor([0.0, 0.0, 1.0], device=device).repeat((num_vecs, 1))
_, translated_pos = torch_utils.tf_combine(q1=quat,
t1=pos,
q2=torch.tensor([0.0, 0.0, 0.0, 1.0], device=device).repeat((num_vecs, 1)),
t2=offset_vec)
return translated_pos
def axis_angle_from_euler(euler):
"""Convert tensor of Euler angles to tensor of axis-angles."""
quat = torch_utils.quat_from_euler_xyz(roll=euler[:, 0], pitch=euler[:, 1], yaw=euler[:, 2])
quat = quat * torch.sign(quat[:, 3]).unsqueeze(-1) # smaller rotation
axis_angle = axis_angle_from_quat(quat)
return axis_angle
def axis_angle_from_quat(quat, eps=1.0e-6):
"""Convert tensor of quaternions to tensor of axis-angles."""
# Reference: https://github.com/facebookresearch/pytorch3d/blob/bee31c48d3d36a8ea268f9835663c52ff4a476ec/pytorch3d/transforms/rotation_conversions.py#L516-L544
mag = torch.linalg.norm(quat[:, 0:3], dim=1)
half_angle = torch.atan2(mag, quat[:, 3])
angle = 2.0 * half_angle
sin_half_angle_over_angle = torch.where(torch.abs(angle) > eps,
torch.sin(half_angle) / angle,
1 / 2 - angle ** 2.0 / 48)
axis_angle = quat[:, 0:3] / sin_half_angle_over_angle.unsqueeze(-1)
return axis_angle
def axis_angle_from_quat_naive(quat):
"""Convert tensor of quaternions to tensor of axis-angles."""
# Reference: https://en.wikipedia.org/wiki/quats_and_spatial_rotation#Recovering_the_axis-angle_representation
# NOTE: Susceptible to undesirable behavior due to divide-by-zero
mag = torch.linalg.vector_norm(quat[:, 0:3], dim=1) # zero when quat = [0, 0, 0, 1]
axis = quat[:, 0:3] / mag.unsqueeze(-1)
angle = 2.0 * torch.atan2(mag, quat[:, 3])
axis_angle = axis * angle.unsqueeze(-1)
return axis_angle
def get_rand_quat(num_quats, device):
"""Generate tensor of random quaternions."""
# Reference: http://planning.cs.uiuc.edu/node198.html
u = torch.rand((num_quats, 3), device=device)
quat = torch.zeros((num_quats, 4), device=device)
quat[:, 0] = torch.sqrt(1 - u[:, 0]) * torch.sin(2 * math.pi * u[:, 1])
quat[:, 1] = torch.sqrt(1 - u[:, 0]) * torch.cos(2 * math.pi * u[:, 1])
quat[:, 2] = torch.sqrt(u[:, 0]) * torch.sin(2 * math.pi * u[:, 2])
quat[:, 3] = torch.sqrt(u[:, 0]) * torch.cos(2 * math.pi * u[:, 2])
return quat
def get_nonrand_quat(num_quats, rot_perturbation, device):
"""Generate tensor of non-random quaternions by composing random Euler rotations."""
quat = torch_utils.quat_from_euler_xyz(
torch.rand((num_quats, 1), device=device).squeeze() * rot_perturbation * 2.0 - rot_perturbation,
torch.rand((num_quats, 1), device=device).squeeze() * rot_perturbation * 2.0 - rot_perturbation,
torch.rand((num_quats, 1), device=device).squeeze() * rot_perturbation * 2.0 - rot_perturbation)
return quat