forked from isaac-sim/IsaacGymEnvs
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathHumanoidAMPPPO.yaml
94 lines (83 loc) · 2.01 KB
/
HumanoidAMPPPO.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
params:
seed: ${...seed}
algo:
name: amp_continuous
model:
name: continuous_amp
network:
name: amp
separate: True
space:
continuous:
mu_activation: None
sigma_activation: None
mu_init:
name: default
sigma_init:
name: const_initializer
val: -2.9
fixed_sigma: True
learn_sigma: False
mlp:
units: [1024, 512]
activation: relu
d2rl: False
initializer:
name: default
regularizer:
name: None
disc:
units: [1024, 512]
activation: relu
initializer:
name: default
load_checkpoint: ${if:${...checkpoint},True,False} # flag which sets whether to load the checkpoint
load_path: ${...checkpoint} # path to the checkpoint to load
config:
name: ${resolve_default:HumanoidAMP,${....experiment}}
full_experiment_name: ${.name}
env_name: rlgpu
ppo: True
multi_gpu: ${....multi_gpu}
mixed_precision: False
normalize_input: True
normalize_value: True
value_bootstrap: True
num_actors: ${....task.env.numEnvs}
reward_shaper:
scale_value: 1
normalize_advantage: True
gamma: 0.99
tau: 0.95
learning_rate: 5e-5
lr_schedule: constant
kl_threshold: 0.008
score_to_win: 20000
max_epochs: ${resolve_default:5000,${....max_iterations}}
save_best_after: 100
save_frequency: 50
print_stats: True
grad_norm: 1.0
entropy_coef: 0.0
truncate_grads: False
e_clip: 0.2
horizon_length: 16
minibatch_size: 32768
mini_epochs: 6
critic_coef: 5
clip_value: False
seq_len: 4
bounds_loss_coef: 10
amp_obs_demo_buffer_size: 200000
amp_replay_buffer_size: 1000000
amp_replay_keep_prob: 0.01
amp_batch_size: 512
amp_minibatch_size: 4096
disc_coef: 5
disc_logit_reg: 0.05
disc_grad_penalty: 5
disc_reward_scale: 2
disc_weight_decay: 0.0001
normalize_amp_input: True
task_reward_w: 0.0
disc_reward_w: 1.0