forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdomino-and-tromino-tiling.py
81 lines (71 loc) · 2.34 KB
/
domino-and-tromino-tiling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Time: O(logn)
# Space: O(logn)
# We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape.
# These shapes may be rotated.
#
# XX <- domino
#
# XX <- "L" tromino
# X
# Given N, how many ways are there to tile a 2 x N board? Return your answer modulo 10^9 + 7.
#
# (In a tiling, every square must be covered by a tile.
# Two tilings are different if and only if there are two 4-directionally adjacent cells on the board
# such that exactly one of the tilings has both squares occupied by a tile.)
#
# Example:
# Input: 3
# Output: 5
# Explanation:
# The five different ways are listed below, different letters indicates different tiles:
# XYZ XXZ XYY XXY XYY
# XYZ YYZ XZZ XYY XXY
#
# Note:
# - N will be in range [1, 1000].
import itertools
class Solution(object):
def numTilings(self, N):
"""
:type N: int
:rtype: int
"""
M = int(1e9+7)
def matrix_expo(A, K):
if K == 0:
return [[int(i==j) for j in xrange(len(A))] \
for i in xrange(len(A))]
if K == 1:
return A
if K % 2:
return matrix_mult(matrix_expo(A, K-1), A)
B = matrix_expo(A, K//2)
return matrix_mult(B, B)
def matrix_mult(A, B):
ZB = zip(*B)
return [[sum(a*b for a, b in itertools.izip(row, col)) % M \
for col in ZB] for row in A]
T = [[1, 0, 0, 1], # #(|) = #(|) + #(=)
[1, 0, 1, 0], # #(「) = #(|) + #(L)
[1, 1, 0, 0], # #(L) = #(|) + #(「)
[1, 1, 1, 0]] # #(=) = #(|) + #(「) + #(L)
return matrix_expo(T, N)[0][0] # T^N * [1, 0, 0, 0]
# Time: O(n)
# Space: O(1)
class Solution2(object):
def numTilings(self, N):
"""
:type N: int
:rtype: int
"""
# Prove:
# dp[n] = dp[n-1](|) + dp[n-2](=) + 2*(dp[n-3](「」) + ... + d[0](「 = ... = 」))
# = dp[n-1] + dp[n-2] + dp[n-3] + dp[n-3] + 2*(dp[n-4] + ... + d[0])
# = dp[n-1] + dp[n-3] + (dp[n-2] + dp[n-3] + 2*(dp[n-4] + ... + d[0])
# = dp[n-1] + dp[n-3] + dp[n-1]
# = 2*dp[n-1] + dp[n-3]
M = int(1e9+7)
dp = [1, 1, 2]
for i in xrange(3, N+1):
dp[i%3] = (2*dp[(i-1)%3]%M + dp[(i-3)%3])%M
return dp[N%3]