This repository has been archived by the owner on Jul 2, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
350 lines (306 loc) · 11.1 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#!/usr/bin/env python
"""
Develop a classifier to distinguish between patients with different degrees of
disease severity.
"""
from sklearn.pipeline import Pipeline # type: ignore[import]
from sklearn.preprocessing import StandardScaler # type: ignore[import]
from sklearn.feature_selection import SelectKBest, mutual_info_classif # type: ignore[import]
from sklearn.linear_model import LogisticRegression # type: ignore[import]
from sklearn.tree import DecisionTreeClassifier # type: ignore[import]
from sklearn.ensemble import RandomForestClassifier # type: ignore[import]
from sklearn.svm import LinearSVC # type: ignore[import]
from sklearn.model_selection import cross_validate # type: ignore[import]
from joblib import Parallel, delayed # type: ignore[import]
from src.conf import *
def fit(_, model, X, y, k=None):
feature_attr = {
RandomForestClassifier: "feature_importances_",
LogisticRegression: "coef_",
# ElasticNet: "coef_",
LinearSVC: "coef_",
}
kws = dict(
cv=10, scoring="roc_auc", return_train_score=True, return_estimator=True
)
# # Randomize order of both X and y (jointly)
# X = X.sample(frac=1.0).copy()
# y = y.reindex(X.index).copy()
clf = model()
# Build pipeline
components = list()
# # Z-score if needed
if not isinstance(clf, RandomForestClassifier):
components += [("scaler", StandardScaler())]
# # Do feature selection if requested
if k is not None:
components += [("selector", SelectKBest(mutual_info_classif, k=k))]
# # Finally add the classifier
components += [("classifier", clf)]
pipe = Pipeline(components)
# Train/cross-validate with real data
out1 = cross_validate(pipe, X, y, **kws)
# Train/cross-validate with shuffled labels
out2 = cross_validate(pipe, X, y.sample(frac=1.0), **kws)
# Extract coefficients/feature importances
feat = feature_attr[clf.__class__]
coefs = tuple()
for out in [out1, out2]:
co = pd.DataFrame(
[
pd.Series(
getattr(c["classifier"], feat),
index=X.columns[c["selector"].get_support()]
if k is not None
else X.columns,
)
for c in out["estimator"]
]
)
# If keeping all variables, simply report mean
if k is None:
coefs += (co.mean(0),)
# otherwise, simply count how often variable was chosen at all
else:
coefs += ((~co.isnull()).sum(),)
return (
out1["train_score"].mean(),
out1["test_score"].mean(),
out2["train_score"].mean(),
out2["test_score"].mean(),
) + coefs
def predict_patient(_, clf, X, y, X_test, patient):
# remove patient from training
# fit on remaining patients
clf = clf.fit(
X.loc[~X.index.isin([patient])], y.loc[~y.index.isin([patient])]
)
# predict patient, return "severe" probability
return clf.predict_log_proba(X_test)[:, 1]
output_dir = results_dir / "predict"
output_dir.mkdir()
# Read in dataframes reduced per patient (earliest timepoint)
meta_red = pd.read_parquet(metadata_dir / "annotation.reduced_per_patient.pq")
red_pat_early = pd.read_parquet("data/matrix_imputed_reduced.red_pat_early.pq")
# Use only mild-severe patients
m = meta_red.query(
"severity_group.isin(['mild', 'severe']).values", engine="python"
)
# Convert classes to binary
y = m["severity_group"].cat.remove_unused_categories().cat.codes
# Align dataframes
X = red_pat_early.loc[m.index]
# # For the other classifiers
N = 1000
insts = [
RandomForestClassifier,
LogisticRegression,
LinearSVC,
# ElasticNet,
]
for label, k in [("", None), (".feature_selection", 8)]:
for model in insts:
name = str(type(model())).split(".")[-1][:-2]
print(name)
# Fit
res = Parallel(n_jobs=-1)(
delayed(fit)(i, model=RandomForestClassifier, X=X, y=y, k=k)
for i in range(N)
)
# Get ROC_AUC scores only
scores = pd.DataFrame(
np.asarray([r[:-2] for r in res]),
columns=[
"train_score",
"test_score",
"train_score_random",
"test_score_random",
],
)
scores.to_csv(
output_dir / f"severe-mild_prediction.{name}{label}.scores.csv"
)
scores = pd.read_csv(
output_dir / f"severe-mild_prediction.{name}{label}.scores.csv",
index_col=0,
)
p = scores.loc[:, scores.columns.str.contains("test")].melt()
if k is not None:
fig, ax = plt.subplots(1, 1, figsize=(2, 4))
ax.axhline(0.5, linestyle="--", color="grey")
sns.boxenplot(data=p, x="variable", y="value", ax=ax)
for x in ax.get_children():
if isinstance(x, patches):
x.set_alpha(0.25)
sns.swarmplot(data=p, x="variable", y="value", alpha=0.5, ax=ax)
ax.set(ylim=(0, 1), xlabel="", ylabel="ROC AUC")
ax.set_xticklabels(ax.get_xticklabels(), rotation=90)
fig.savefig(
output_dir
/ f"severe-mild_prediction.{name}{label}.k{k}.{N}.svg",
**figkws,
)
continue
# Get weights
n_vars = res[0][-1].shape[0]
real_weights = pd.DataFrame([r[-2] for r in res])
random_weights = pd.DataFrame([r[-1] for r in res])
real_weights.to_csv(
output_dir
/ f"severe-mild_prediction.{name}{label}.k{k}.{N}.weights.csv"
)
random_weights.to_csv(
output_dir
/ f"severe-mild_prediction.{name}{label}.k{k}.{N}.random_weights.csv"
)
weights = pd.read_csv(
output_dir
/ f"severe-mild_prediction.{name}{label}.k{k}.{N}.weights.csv",
index_col=0,
)
random_weights = pd.read_csv(
output_dir
/ f"severe-mild_prediction.{name}{label}.k{k}.{N}.random_weights.csv",
index_col=0,
)
# if (weights.fillna(1) > 0).all().all():
# wd = np.log(real_weights.mean()) - np.log(random_weights.mean())
# else:
wd = real_weights.mean() - random_weights.mean()
sign = X.join(y.rename("severity")).corr()["severity"] > 0
wd *= sign.astype(int).replace(0, -1)
gs_kw = dict(width_ratios=[0.2, 0.8])
fig, ax = plt.subplots(1, 2, figsize=(8, 4), gridspec_kw=gs_kw)
ax[0].axhline(0.5, linestyle="--", color="grey")
sns.boxenplot(data=p, x="variable", y="value", ax=ax[0])
for x in ax[0].get_children():
if isinstance(x, patches):
x.set_alpha(0.25)
sns.swarmplot(data=p, x="variable", y="value", alpha=0.5, ax=ax[0])
ax[0].set(ylim=(0, 1), xlabel="", ylabel="ROC AUC")
ax[0].set_xticklabels(ax[0].get_xticklabels(), rotation=90)
rank = wd.rank()
sort = wd.sort_values().dropna()
ax[1].scatter(rank, wd, s=5, alpha=0.5)
for v in sort.head(10).index:
ax[1].text(rank.loc[v], wd.loc[v], s=v, ha="left")
for v in sort.tail(10).index:
ax[1].text(rank.loc[v], wd.loc[v], s=v, ha="right")
ax[1].axhline(0, linestyle="--", color="grey")
ax[1].set(
xlabel="Variable (rank)",
ylabel="Feature importance\nover random(log, signed)",
)
fig.savefig(
output_dir / f"severe-mild_prediction.{name}{label}.k{k}.{N}.svg",
**figkws,
)
pval = (
(scores["test_score"].median() < scores["test_score_random"]).sum()
) / N
# Predict all samples of a patient for patients with >=3 timepooints
clf = RandomForestClassifier()
name = str(type(clf)).split(".")[-1][:-2]
pts = (
meta.groupby(["patient", "patient_code"])
.size()
.sort_values()
.loc["Patient"]
)
pts = pts[pts >= 3].index
n = 100
fig, axes = plt.subplots(2, 4, figsize=(4 * 4, 2 * 2), sharey=True)
for ax, patient in zip(axes.flat, pts):
# patient = "P016"
# n = 100
pat = meta.loc[meta["patient_code"] == patient].sort_values("time_symptoms")
X_test = matrix.loc[
pat.index, X.columns,
]
r = Parallel(n_jobs=-1)(
delayed(predict_patient)(
i,
model=RandomForestClassifier,
X=X,
y=y,
X_test=X_test,
patient=patient,
)
for i in range(N)
)
r = np.concatenate(r).reshape((n, X_test.shape[0]))
m = np.e ** np.median(r, 0)
l = np.e ** np.percentile(r, 5, 0)
u = np.e ** np.percentile(r, 95, 0)
ax.plot(pat["time_symptoms"], m, "-o")
ax.fill_between(pat["time_symptoms"], l, u, alpha=0.2)
ax.axhline(0.5, linestyle="--", color="grey")
ax.set(title=patient) # ylim=(0.35, 0.85),
fig.savefig(
output_dir
/ f"severe-mild_prediction.{name}{label}.predict_patient_timeline.{n}.svg",
**figkws,
)
# Try out different number of variables
N = 12
perf: Dict[int, float] = dict()
perf_q5: Dict[int, float] = dict()
perf_q95: Dict[int, float] = dict()
random_perf: Dict[int, float] = dict()
random_perf_q5: Dict[int, float] = dict()
random_perf_q95: Dict[int, float] = dict()
weights_: Dict[int, pd.Series] = dict()
random_weights_: Dict[int, pd.Series] = dict()
for k in list(range(1, 11)) + [12, 15, 20, 30, 40, 50, 75, 96]:
print(perf)
# Fit
res = Parallel(n_jobs=-1)(
delayed(fit)(i, model=RandomForestClassifier, X=X, y=y, k=k)
for i in range(N)
)
# Get ROC_AUC scores only
scores = pd.DataFrame(
np.asarray([r[:-2] for r in res]),
columns=[
"train_score",
"test_score",
"train_score_random",
"test_score_random",
],
)
perf[k] = scores.mean()["test_score"]
perf_q5[k] = scores.quantile(0.05)["test_score"]
perf_q95[k] = scores.quantile(0.95)["test_score"]
random_perf[k] = scores.mean()["test_score_random"]
random_perf_q5[k] = scores.quantile(0.05)["test_score_random"]
random_perf_q95[k] = scores.quantile(0.95)["test_score_random"]
weights_[k] = (
pd.DataFrame([r[-2] for r in res]).sum().reindex(X.columns).fillna(0)
)
random_weights_[k] = (
pd.DataFrame([r[-1] for r in res]).sum().reindex(X.columns).fillna(0)
)
x = pd.DataFrame(
[perf, perf_q5, perf_q95, random_perf, random_perf_q5, random_perf_q95],
index=["mean", "q5", "q95", "random_mean", "random_q5", "random_q95"],
).T.sort_index()
fig, ax = plt.subplots(1, 1, figsize=(5, 3))
ax.plot(x.index, x["mean"], "-o", alpha=0.75)
ax.fill_between(x.index, x["q5"], x["q95"], alpha=0.25, label="Real labels")
ax.plot(x.index, x["random_mean"], "-o", color="grey", alpha=0.75)
ax.fill_between(
x.index,
x["random_q5"],
x["random_q95"],
alpha=0.25,
color="grey",
label="Randomized labels",
)
ax.axhline(0.5, linestyle="--", color="grey")
ax.legend()
ax.set(
xlabel="K variables selected",
ylabel="ROC-AUC\n(mean/95 CI of 100 CV loops)",
)
ax.set_ylim((0, 1))
fig.savefig(output_dir / "prediction.performance_as_select_k.svg", **figkws)