-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
516 lines (429 loc) · 28.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import json
import math
import random
from typing import Union
from absl import app, flags
import os
import pickle
import numpy as np
import setproctitle
import torch
import torch.distributed as dist
import torch.optim as optim
from transformers import get_linear_schedule_with_warmup
from ogb.lsc import WikiKG90MEvaluator
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader, DistributedSampler, Subset, SubsetRandomSampler
from tqdm import tqdm
from attributed_eval import AttributedEvaluator, convert_stats_to_percentiles
from data.data_classes import get_testing_dataset, get_training_dataset, get_validation_dataset, KGInferenceDataset, \
KGBaseDataset, get_training_inference_dataset
from data.data_loading import TrainingCollateFunction, InferenceCollateQueryFunction, InferenceCollateTargetFunction
from data.data_processing import load_processed_data, KGProcessedDataset
from evaluation import compute_eval_stats
from model.kg_completion_gnn import KGCompletionGNN, ModelConfig
from utils import load_model, load_opt_checkpoint, save_checkpoint, save_model
FLAGS = flags.FLAGS
flags.DEFINE_string("dataset", "wikikg90m_kddcup2021", "Specifies dataset from [wikikg90m_kddcup2021, wordnet-mlj12]")
flags.DEFINE_string("root_data_dir", "/nas/home/elanmark/data", "Root data dir for installing the ogb dataset")
flags.DEFINE_integer("num_workers", 0, "Number of workers for the dataloader.")
# flags.DEFINE_integer("local_rank", 0, "Local rank, used for torch distributed launch.")
flags.DEFINE_integer("print_freq", 1024, "How frequently to print learning statistics in number of iterations")
flags.DEFINE_string("device", "cuda", "Device to use (cuda/cpu).")
flags.DEFINE_string("checkpoint", None, "Resume training from checkpoint file in checkpoints directory.")
flags.DEFINE_string("name", "run01", "A name to use for saving the run.")
flags.DEFINE_integer("batch_size", 100, "Batch size. Number of triples.")
flags.DEFINE_integer("neg_samples", 1, "Number of neg samples per positive tail during training.")
flags.DEFINE_integer("samples_per_node", 10, "Number of neighbors to sample for each entity in a query triple.")
flags.DEFINE_integer("embed_dim", 256, "Number of dimensions for hidden states.")
flags.DEFINE_integer("layers", 2, "Number of message passing and edge update layers for model.")
flags.DEFINE_float("lr", 1e-2, "Learning rate for optimizer.")
flags.DEFINE_integer("validate_every", 1, "How many iterations to do between each single batch validation.")
flags.DEFINE_integer("validation_batches", None, "Max number of batches to do for each validation check (default: None).")
flags.DEFINE_integer("valid_batch_size", 1, "Batch size for validation (does all t_candidates at once).")
flags.DEFINE_integer("epochs", 1, "Num epochs to train for")
flags.DEFINE_float("margin", 1.0, "Margin in transE loss")
flags.DEFINE_string("decoder", "MLP+TransE", "Choose decoder from [TBA]")
flags.DEFINE_string("language_model", "bert-base-cased", "Name of language model to use for encoding [from huggingface]")
flags.DEFINE_string("encoder", "ours_parallel", "Encoder type to use [ours_parallel, ours_sequential, BLP, StAR]")
flags.DEFINE_float("dropout", 0.0, "Dropout on input features.")
flags.DEFINE_float("warmup", 0.2, "Warmup period as proportion of total training")
flags.DEFINE_bool('validation_only', False, 'Whether or not to do a complete inference run across the validation set')
flags.DEFINE_bool('test_only', False, 'Whether or not to do a complete inference run across the test set')
flags.DEFINE_string('model_path', None, 'Path where the model is saved (inference only)')
flags.DEFINE_string("test_save_dir", "test_submissions", "Directory to save test results file in.")
flags.DEFINE_bool("validation_attribution", False, "Whether to perform validation attribution on full validation runs")
flags.DEFINE_bool("predict_heads", True, "Whether to predict heads during inference.")
CHECKPOINT_DIR = "checkpoints"
def prepare_batch_for_model(batch, dataset: Union[KGProcessedDataset, KGBaseDataset], save_batch=False):
input_ids, token_type_ids, attention_mask, ht_tensor, r_tensor, r_query, entity_set, entity_feat, query_nodes, r_relatives, is_head_prediction = batch
if entity_feat is None:
entity_feat = torch.from_numpy(dataset.entity_feat[entity_set.numpy()]).float()
batch = input_ids, token_type_ids, attention_mask, ht_tensor, r_tensor, r_query, entity_set, entity_feat, query_nodes, r_relatives, is_head_prediction
if save_batch:
pickle.dump(batch, open('sample_batch.pkl', 'wb'))
return batch
def move_batch_to_device(batch, device, *args):
input_ids, token_type_ids, attention_mask, ht_tensor, r_tensor, r_query, entity_set, entity_feat, query_nodes, r_relatives, is_head_prediction = batch
input_ids = input_ids.to(device)
token_type_ids = token_type_ids.to(device)
attention_mask = attention_mask.to(device)
ht_tensor = ht_tensor.to(device)
r_tensor = r_tensor.to(device)
r_query = r_query.to(device)
entity_feat = entity_feat.to(device)
r_relatives = r_relatives.to(device)
is_head_prediction = is_head_prediction.to(device)
batch = input_ids, token_type_ids, attention_mask, ht_tensor, r_tensor, r_query, entity_set, entity_feat, query_nodes, r_relatives, is_head_prediction
if args:
args = [arg.to(device) for arg in args]
return batch, args
return batch
def train(global_rank, local_rank, world):
torch.cuda.set_device(local_rank)
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
dataset = load_processed_data(FLAGS.root_data_dir, FLAGS.dataset)
train_dataset = get_training_dataset(dataset)
train_sampler = DistributedSampler(train_dataset, rank=global_rank, shuffle=True)
train_collate_fn = TrainingCollateFunction(train_dataset, max_neighbors=FLAGS.samples_per_node,
num_negatives=FLAGS.neg_samples, encoder_method=FLAGS.encoder)
train_loader = DataLoader(train_dataset, batch_size=FLAGS.batch_size,
num_workers=FLAGS.num_workers, sampler=train_sampler,
collate_fn=train_collate_fn)
target_dataset = get_validation_dataset(dataset).target_mode()
target_subset = partition_dataset_by_rank(target_dataset, global_rank, world)
target_collate_fn = InferenceCollateTargetFunction(target_dataset, FLAGS.samples_per_node, FLAGS.encoder)
target_dataloader = DataLoader(target_subset, batch_size=FLAGS.valid_batch_size, num_workers=FLAGS.num_workers,
collate_fn=target_collate_fn)
eval_queries = np.random.choice(np.arange(0, dataset.num_entities), (10000,), replace=False)
train_eval_dataset = get_training_inference_dataset(dataset).query_mode()
train_eval_collate_fn_tail = InferenceCollateQueryFunction(train_eval_dataset, FLAGS.samples_per_node,
head_prediction=False, encoder_method=FLAGS.encoder)
train_eval_collate_fn_head = InferenceCollateQueryFunction(train_eval_dataset, FLAGS.samples_per_node,
head_prediction=False, encoder_method=FLAGS.encoder)
train_eval_dataset = Subset(train_eval_dataset, eval_queries) # don't use all queries for mrr calculation
train_eval_subset = partition_dataset_by_rank(train_eval_dataset, global_rank, world)
train_target_dataset = get_training_inference_dataset(dataset).target_mode()
train_target_subset = partition_dataset_by_rank(train_target_dataset, global_rank, world)
train_target_collate_fn = InferenceCollateTargetFunction(train_target_dataset, FLAGS.samples_per_node, FLAGS.encoder)
train_target_dataloader = DataLoader(train_target_subset, batch_size=FLAGS.valid_batch_size,
num_workers=FLAGS.num_workers, collate_fn=train_target_collate_fn)
train_eval_dataloader_tail = DataLoader(train_eval_subset, batch_size=FLAGS.valid_batch_size, num_workers=FLAGS.num_workers,
collate_fn=train_eval_collate_fn_tail)
train_eval_dataloader_head = DataLoader(train_eval_subset, batch_size=FLAGS.valid_batch_size, num_workers=FLAGS.num_workers,
collate_fn=train_eval_collate_fn_head)
valid_dataset = get_validation_dataset(dataset).query_mode()
valid_subset = partition_dataset_by_rank(valid_dataset, global_rank, world)
valid_collate_fn_tail = InferenceCollateQueryFunction(valid_dataset, FLAGS.samples_per_node, head_prediction=False,
encoder_method=FLAGS.encoder)
valid_dataloader_tail = DataLoader(valid_subset, batch_size=FLAGS.valid_batch_size, num_workers=FLAGS.num_workers,
collate_fn=valid_collate_fn_tail)
valid_collate_fn_head = InferenceCollateQueryFunction(valid_dataset, FLAGS.samples_per_node, head_prediction=True,
encoder_method=FLAGS.encoder)
valid_dataloader_head = DataLoader(valid_subset, batch_size=FLAGS.valid_batch_size, num_workers=FLAGS.num_workers,
collate_fn=valid_collate_fn_head)
if FLAGS.checkpoint is not None:
model = load_model(os.path.join(CHECKPOINT_DIR, FLAGS.checkpoint), ignore_state_dict=(global_rank != 0))
else:
model = KGCompletionGNN(dataset.relation_feat, dataset.num_relations, dataset.feature_dim, ModelConfig(FLAGS))
model.to(local_rank)
# saved = torch.load('checkpoints/wn18rr_transe_star_best_model.pkl', map_location="cpu")
# model.load_state_dict(saved['state_dict'], strict=False)
ddp_model = DDP(model, device_ids=[local_rank], process_group=world, find_unused_parameters=True)
loss_fn = model.get_loss_fn(margin=FLAGS.margin)
opt = optim.AdamW(ddp_model.parameters(), lr=FLAGS.lr, betas=(.9, .98))
fake_opt = optim.AdamW(ddp_model.parameters(), lr=FLAGS.lr)
scheduler = get_linear_schedule_with_warmup(opt,
num_warmup_steps=int(FLAGS.warmup * len(train_loader) * FLAGS.epochs),
num_training_steps=len(train_loader) * FLAGS.epochs)
start_epoch = 0
if FLAGS.checkpoint:
start_epoch = load_opt_checkpoint(os.path.join(CHECKPOINT_DIR, FLAGS.checkpoint), opt, scheduler)
moving_average_loss = torch.tensor(1.0, device=local_rank)
max_mrr = 0
max_token_length = 0
for epoch in range(start_epoch, FLAGS.epochs):
if global_rank == 0:
print(f'Epoch {epoch}')
for i, (batch, queries, positive_targets, negative_targets, neg_filter) in enumerate(tqdm(train_loader)):
ddp_model.train()
batch = prepare_batch_for_model(batch, dataset)
batch = move_batch_to_device(batch, local_rank)
input_ids, token_type_ids, attention_mask, ht_tensor, r_tensor, r_query, entity_set, entity_feat, query_nodes, r_relatives, is_head_prediction = batch
# print(f'max prev token size {max_token_length}, curr token length {input_ids.shape[1]}')
pos_scores, neg_scores = ddp_model(input_ids, token_type_ids, attention_mask, ht_tensor, r_tensor, r_query,
entity_feat, query_nodes, r_relatives, is_head_prediction,
queries=queries, positive_targets=positive_targets,
negative_targets=negative_targets)
loss = loss_fn(pos_scores, neg_scores, neg_filter=neg_filter)
# max_token_length = max(input_ids.shape[1], max_token_length)
moving_average_loss = .99 * moving_average_loss + 0.01 * loss.detach()
opt.zero_grad()
loss.backward()
opt.step()
scheduler.step()
if (FLAGS.print_freq > 0 and (i + 1) % FLAGS.print_freq == 0) or ((i + 1) == len(train_loader)):
dist.all_reduce(moving_average_loss, group=world)
moving_average_loss /= dist.get_world_size()
if global_rank == 0:
print(f"Iteration={i}/{len(train_loader)}, "
f"Moving Avg Loss={moving_average_loss.cpu().numpy():.5f}, "
f"Current Loss={loss.detach().cpu().numpy():.5f}")
if (epoch + 1) % FLAGS.validate_every == 0:
if FLAGS.dataset != "Wikidata5M":
train_t_res, train_h_res = perform_model_validation(
ddp_model, train_eval_dataset, train_target_dataset, train_eval_dataloader_tail,
train_eval_dataloader_head, train_target_dataloader, global_rank, local_rank, world)
if global_rank == 0:
mrr_tail = train_t_res['mrr_filtered']
mrr_head = train_h_res['mrr_filtered']
mrr = 0.5 * mrr_tail + 0.5 * mrr_head
print(f'Train MRR = {mrr}, t_pred MRR = {mrr_tail}, h_pred MRR = {mrr_head}')
valid_t_res, valid_h_res = perform_model_validation(
ddp_model, valid_dataset, target_dataset, valid_dataloader_tail, valid_dataloader_head,
target_dataloader, global_rank, local_rank, world)
if global_rank == 0:
mrr_tail = valid_t_res['mrr_filtered']
mrr_head = valid_h_res['mrr_filtered']
mrr = 0.5 * mrr_tail + 0.5 * mrr_head
if mrr > max_mrr:
max_mrr = mrr
save_model(ddp_model.module, os.path.join(CHECKPOINT_DIR, f'{FLAGS.name}_best_model.pkl'))
print(f'Validation MRR = {mrr}, t_pred MRR = {mrr_tail}, h_pred MRR = {mrr_head}, best MRR = {max_mrr}')
if global_rank == 0:
save_checkpoint(ddp_model.module, epoch + 1, opt, scheduler, os.path.join(CHECKPOINT_DIR, f"{FLAGS.name}_e{epoch}.pkl"))
def perform_model_validation(model, eval_dataset, target_dataset, dataloader_tail, dataloader_head, target_dataloader,
global_rank, local_rank, world):
model.eval()
eval_gather_sizes = calculate_gather_sizes(eval_dataset, world, FLAGS.validation_batches, FLAGS.valid_batch_size)
target_gather_sizes = calculate_gather_sizes(target_dataset, world)
if isinstance(eval_dataset, Subset):
eval_dataset = eval_dataset.dataset
t_res = validate(eval_dataset, dataloader_tail, target_dataloader, model, global_rank,
local_rank, eval_gather_sizes, target_gather_sizes, num_batches=FLAGS.validation_batches,
world=world)
h_res = validate(eval_dataset, dataloader_head, target_dataloader, model, global_rank,
local_rank, eval_gather_sizes, target_gather_sizes, num_batches=FLAGS.validation_batches,
world=world)
return t_res, h_res
def partition_dataset_by_rank(dataset, global_rank, world):
num_ranks = world.size()
idxs_per_rank = math.ceil(len(dataset) / num_ranks)
start_idx = global_rank * idxs_per_rank
end_idx = (global_rank + 1) * idxs_per_rank if ((global_rank + 1) * idxs_per_rank <= len(dataset)) else len(dataset)
rank_idxs = torch.arange(start_idx, end_idx, dtype=torch.long).tolist()
# print(f"Global rank {global_rank} processing dataset from {rank_idxs[0]} through {rank_idxs[-1]}")
subset = Subset(dataset, rank_idxs)
return subset
def calculate_gather_sizes(dataset, world, num_batches=None, batch_size=None):
num_ranks = world.size()
if num_batches is None or num_batches < 0:
gather_sizes = [math.ceil(len(dataset) / num_ranks)] * (num_ranks - 1)
last_size = len(dataset) - sum(gather_sizes)
gather_sizes.append(last_size)
else:
assert len(dataset) >= (num_batches * batch_size * num_ranks), "Too many validation batches for validation dataset size."
gather_sizes = [batch_size * num_batches] * num_ranks
return gather_sizes
def inference_only(global_rank, local_rank, world):
assert FLAGS.test_only or FLAGS.validation_only, "Must run validation set or test set if running inference."
assert not (FLAGS.test_only and FLAGS.validation_only), "Can only run on one of test or validation when doing inference."
torch.cuda.set_device(local_rank)
torch.manual_seed(0)
random.seed(0)
np.random.seed(0)
base_dataset = load_processed_data(FLAGS.root_data_dir, FLAGS.dataset)
if FLAGS.validation_only:
eval_dataset = get_validation_dataset(base_dataset).query_mode()
target_dataset = get_validation_dataset(base_dataset).target_mode()
else:
eval_dataset = get_testing_dataset(base_dataset).query_mode()
target_dataset = get_testing_dataset(base_dataset).target_mode()
target_subset = partition_dataset_by_rank(target_dataset, global_rank, world)
target_collate_fn = InferenceCollateTargetFunction(target_dataset, FLAGS.samples_per_node, FLAGS.encoder)
target_dataloader = DataLoader(target_subset, batch_size=FLAGS.valid_batch_size, num_workers=FLAGS.num_workers,
collate_fn=target_collate_fn)
target_gather_sizes = calculate_gather_sizes(target_dataset, world)
eval_subset = partition_dataset_by_rank(eval_dataset, global_rank, world)
eval_collate_fn_head = InferenceCollateQueryFunction(eval_dataset, FLAGS.samples_per_node, True, FLAGS.encoder)
eval_dataloader_head = DataLoader(eval_subset, batch_size=FLAGS.valid_batch_size, num_workers=FLAGS.num_workers,
collate_fn=eval_collate_fn_head)
eval_collate_fn_tail = InferenceCollateQueryFunction(eval_dataset, FLAGS.samples_per_node, False, FLAGS.encoder)
eval_dataloader_tail = DataLoader(eval_subset, batch_size=FLAGS.valid_batch_size, num_workers=FLAGS.num_workers,
collate_fn=eval_collate_fn_tail)
eval_gather_sizes = calculate_gather_sizes(eval_dataset, world, FLAGS.validation_batches, FLAGS.valid_batch_size)
assert FLAGS.model_path is not None, 'Must be supplied with model to do inference.'
model = load_model(FLAGS.model_path, ignore_state_dict=(global_rank != 0))
model.to(local_rank)
ddp_model = DDP(model, device_ids=[local_rank], process_group=world)
ddp_model.eval()
result = {}
for mode, loader in zip(["head", "tail"], [eval_dataloader_head, eval_dataloader_tail]):
if FLAGS.validation_only:
result[mode] = validate(eval_dataset, loader, target_dataloader, ddp_model, global_rank, local_rank,
eval_gather_sizes, target_gather_sizes, FLAGS.validation_batches, world)
else:
result[mode] = test(eval_dataset, loader, target_dataloader, ddp_model, global_rank, local_rank,
eval_gather_sizes, target_gather_sizes, FLAGS.validation_batches, world)
if global_rank == 0:
result["mean"] = {}
for key in result["head"].keys():
result["mean"][key] = 0.5 * result["head"][key] + 0.5 * result["tail"][key]
print(json.dumps(result, indent=2, sort_keys=False))
def run_inference(dataset: KGInferenceDataset, dataloader: DataLoader, target_loader: DataLoader, model,
global_rank: int, local_rank: int, eval_gather_sizes: list, target_gather_sizes: list,
num_batches: int = None, world=None, use_full_preds=False):
model.eval()
with torch.no_grad():
model.module.encode_only(True)
target_embeds = []
for i, batch in enumerate(target_loader):
batch = prepare_batch_for_model(batch, dataset.base_ds)
batch = move_batch_to_device(batch, local_rank)
input_ids, token_type_ids, attention_mask, ht_tensor, r_tensor, r_query, entity_set, entity_feat, query_nodes, r_relatives, is_head_prediction = batch
batch_target_embeds = model(input_ids, token_type_ids, attention_mask, ht_tensor, r_tensor, r_query,
entity_feat, query_nodes, r_relatives, is_head_prediction)
target_embeds.append(batch_target_embeds.cpu())
target_embeds = torch.cat(target_embeds, dim=0)
full_target_embeds = gather_results(target_embeds, global_rank, local_rank, target_gather_sizes, world, all_gather=True)
full_pos_scores = []
full_target_scores = []
full_filter_masks = []
with torch.no_grad():
model.module.encode_only(False)
for i, (batch, true_target, target_filter_mask) in enumerate(dataloader):
batch = prepare_batch_for_model(batch, dataset.base_ds)
batch = move_batch_to_device(batch, local_rank)
input_ids, token_type_ids, attention_mask, ht_tensor, r_tensor, r_query, entity_set, entity_feat, query_nodes, r_relatives, is_head_prediction = batch
pos_scores, neg_scores = model(input_ids, token_type_ids, attention_mask, ht_tensor, r_tensor, r_query,
entity_feat, query_nodes, r_relatives, is_head_prediction,
queries=torch.logical_not(true_target), target_embeddings=full_target_embeds)
full_pos_scores.append(pos_scores.cpu())
full_target_scores.append(neg_scores.cpu())
full_filter_masks.append(target_filter_mask)
if num_batches and num_batches == (i + 1):
break
if i % 100 == 0:
dist.barrier(group=world)
full_pos_scores = torch.cat(full_pos_scores, dim=0)
agg_pos_scores = gather_results(full_pos_scores, global_rank, local_rank, eval_gather_sizes, world).cpu()
full_target_scores = torch.cat(full_target_scores, dim=0)
agg_target_scores = gather_results(full_target_scores, global_rank, local_rank, eval_gather_sizes, world).cpu()
full_filter_masks = torch.cat(full_filter_masks, dim=0)
agg_filter_masks = gather_results(full_filter_masks, global_rank, local_rank, eval_gather_sizes, world).cpu()
return agg_pos_scores, agg_target_scores, agg_filter_masks
def validate(valid_dataset: KGInferenceDataset, valid_dataloader: DataLoader, target_dataloader: DataLoader, model,
global_rank: int, local_rank: int, eval_gather_sizes: list, target_gather_sizes: list,
num_batches: int = None, world=None):
evaluator = WikiKG90MEvaluator()
use_full_preds = FLAGS.dataset != "wikikg90m_kddcup2021"
pos_scores, target_scores, filter_mask = run_inference(valid_dataset, valid_dataloader, target_dataloader, model,
global_rank, local_rank, eval_gather_sizes,
target_gather_sizes, num_batches, world,
use_full_preds=use_full_preds)
result_dict = None
if global_rank == 0:
if FLAGS.validation_attribution and FLAGS.validation_only: # TODO: fix this for refactor
input_dict = {'h,r->t': {'t_pred_top10': top10_preds.cpu().numpy(),
't_correct_index': correct_indices.cpu().numpy(),
'hr': valid_dataset.hr,
't_candidate': valid_dataset.t_candidate}}
stats_dict = {}
stats_dict_thresholds = {}
indegrees, indegrees_thresholds = convert_stats_to_percentiles(valid_dataset.ds.indegrees)
stats_dict['t_indegree'] = indegrees
stats_dict_thresholds['t_indegree'] = indegrees_thresholds
t_outdegree, t_outdegree_thresholds = convert_stats_to_percentiles(valid_dataset.ds.outdegrees)
stats_dict['t_outdegree'] = t_outdegree
stats_dict_thresholds['t_outdegree'] = t_outdegree_thresholds
t_degree, t_degree_thresholds = convert_stats_to_percentiles(valid_dataset.ds.degrees)
stats_dict['t_degree'] = t_degree
stats_dict_thresholds['t_degree'] = t_degree_thresholds
h_indegree, h_indegree_thresholds = convert_stats_to_percentiles(valid_dataset.ds.indegrees)
stats_dict['h_indegree'] = h_indegree
stats_dict_thresholds['h_indegree'] = h_indegree_thresholds
h_outdegree, h_outdegree_thresholds = convert_stats_to_percentiles(valid_dataset.ds.outdegrees)
stats_dict['h_outdegree'] = h_outdegree
stats_dict_thresholds['h_outdegree'] = h_outdegree_thresholds,
h_degree, h_degree_thresholds = convert_stats_to_percentiles(valid_dataset.ds.degrees)
stats_dict['h_degree'] = h_degree
stats_dict_thresholds['h_degree'] = h_degree_thresholds
r_frequency, r_frequency_thresholds = convert_stats_to_percentiles(np.unique(valid_dataset.ds.train_r, return_counts=True)[1])
stats_dict['r_frequency'] = r_frequency
stats_dict_thresholds['r_frequency'] = r_frequency_thresholds
attr_evaluator = AttributedEvaluator()
results = attr_evaluator.eval(input_dict, stats_dict)
pickle.dump(results, open("validation_analysis.pkl", "wb"))
pickle.dump(stats_dict_thresholds, open("analysis_thresholds.pkl", "wb"))
if use_full_preds:
# filter_mask[:, valid_dataset.test_entities] = -1 # TODO: add this to get_testing_dataset
result_dict = compute_eval_stats(pos_scores.detach().cpu().numpy(),
target_scores.detach().cpu().numpy(),
filter_mask=filter_mask.detach().cpu().numpy())
else: # TODO: fix this for refactor
input_dict = {'h,r->t': {'t_pred_top10': top10_preds.cpu().numpy(), 't_correct_index': correct_indices.cpu().numpy()}}
result_dict = evaluator.eval(input_dict)
return result_dict
def test(test_dataset, test_dataloader: DataLoader, target_dataloader: DataLoader, model, global_rank: int,
local_rank: int, eval_gather_sizes: list, target_gather_sizes: list, num_batches: int = None, world=None):
evaluator = WikiKG90MEvaluator()
use_full_preds = FLAGS.dataset != "wikikg90m_kddcup2021"
pos_scores, target_scores, filter_mask = run_inference(test_dataset, test_dataloader, target_dataloader, model,
global_rank, local_rank, eval_gather_sizes,
target_gather_sizes, num_batches, world,
use_full_preds=use_full_preds)
result_dict = None
if global_rank == 0:
if use_full_preds:
result_dict = compute_eval_stats(pos_scores.detach().cpu().numpy(),
target_scores.detach().cpu().numpy(),
filter_mask=filter_mask.detach().cpu().numpy())
else:
print('Saving...')
assert len(top10_preds) == len(test_dataset), f"Number of predictions is {len(top10_preds)}. Size of dataset is {len(test_dataset)}"
input_dict = {'h,r->t': {'t_pred_top10': top10_preds}}
evaluator.save_test_submission(input_dict=input_dict, dir_path=FLAGS.test_save_dir)
print(f'Results saved under {FLAGS.test_save_dir}')
result_dict = {}
return result_dict
def gather_results(data: torch.Tensor, global_rank, local_rank, gather_sizes, world, all_gather=False) -> torch.Tensor:
gather_list = []
device = local_rank if dist.get_backend(world) == dist.Backend.NCCL else 'cpu'
for size in gather_sizes:
gather_list.append(torch.empty(size, *data.shape[1:], dtype=data.dtype, device=device))
dist.barrier()
if global_rank == 0:
gather_list[0] = data.to(device)
for p in range(1, world.size()):
dist.recv(gather_list[p], src=p, group=world)
else:
assert data.shape == gather_list[global_rank].shape, \
f"Gather size {gather_list[global_rank].shape} does not match data being sent {data.shape}. Check code for bug."
dist.send(data.to(device), dst=0, group=world)
dist.barrier()
result = torch.cat(gather_list, dim=0)
if all_gather:
dist.broadcast(result, 0)
dist.barrier()
return result
def main(argv):
# torch.multiprocessing.set_sharing_strategy('file_system')
grank = int(os.environ['RANK'])
ws = int(os.environ['WORLD_SIZE'])
master_addr = os.environ['MASTER_ADDR']
master_port = os.environ['MASTER_PORT']
local_rank = int(os.environ['LOCAL_RANK'])
backend = dist.Backend.GLOO if FLAGS.validation_only or FLAGS.test_only else dist.Backend.NCCL
dist.init_process_group(backend=backend,
init_method="tcp://{}:{}".format(master_addr, master_port), rank=grank, world_size=ws)
setproctitle.setproctitle("KGCompletionTrainer:{}".format(grank))
world = dist.group.WORLD
if FLAGS.validation_only or FLAGS.test_only:
inference_only(grank, local_rank, world)
else:
train(grank, local_rank, world)
dist.destroy_process_group()
if __name__ == "__main__":
app.run(main)