-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsubmodule.py
483 lines (403 loc) · 17.5 KB
/
submodule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
"""
# ==================================
# AUTHOR : Yan Li, Qiong Wang
# CREATE DATE : 03.13.2020
# Contact : [email protected]
# ==================================
# Change History: None
# ==================================
"""
############################################################
# Import third-party libs (numpy, tensorflow)
############################################################
import numpy as np
import tensorflow as tf
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.layers import Layer, Input, Lambda
from tensorflow.python.keras.layers import Conv2D
from tensorflow.python.keras.layers import Conv3D, Conv3DTranspose
from tensorflow.python.keras.layers import Activation
from tensorflow.python.keras.layers import Dropout, BatchNormalization
from tensorflow.python.keras.layers import GlobalMaxPooling3D
from tensorflow.python.keras.layers import concatenate, add, Add
from tensorflow.python.keras import regularizers
from tensorflow.python.keras import backend as K
k_init = "glorot_uniform"
norm_type = "bn"
############################################################
# Define ops and layers
############################################################
def upsample_ops(image, width, height, axis=None, scale=1, interp="bilinear"):
resized_list = []
unstack_img_depth_list = tf.unstack(image, axis=axis)
for i in unstack_img_depth_list:
if interp == "bilinear":
resized_list.append(scale * tf.image.resize_images(i, [width, height],
method=tf.image.ResizeMethod.BILINEAR))
elif interp == "nearest":
resized_list.append(scale * tf.image.resize_images(i, [width, height],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR))
return tf.stack(resized_list, axis=axis)
def conv_2d(x, filter_num, ks, strides=None, padding=None, dilation_rate=None, use_bias=None,
conv_type=None, activation=None, k_reg=None, name=None):
if not isinstance(ks, (list, tuple)):
ks = (ks, ks)
if strides is None:
strides = (1, 1)
if padding == "zero":
padding = "same"
else:
padding = "valid"
if dilation_rate is None:
dilation_rate = 1
if use_bias is None:
use_bias = True
if k_reg is not None:
weight_decay = 0.005
k_reg = regularizers.l2(weight_decay)
if conv_type == "conv" or conv_type is None:
x = Conv2D(filter_num, ks, strides=strides, padding=padding,
dilation_rate=dilation_rate, use_bias=use_bias, kernel_initializer=k_init,
kernel_regularizer=k_reg, name=name)(x)
if activation is not None:
if activation == "relu":
x = Activation('relu')(x)
return x
def conv_3d(x, filter_num, ks=None, strides=None, padding=None, use_bias=None,
activation=None, k_reg=None, name=None):
if ks is None:
ks = 1
if strides is None:
strides = (1, 1, 1)
if padding == "zero":
padding = "same"
if use_bias is None:
use_bias = True
if k_reg is not None:
weight_decay = 0.005
k_reg = regularizers.l2(weight_decay)
x = Conv3D(filter_num, ks, strides=strides, padding=padding, use_bias = use_bias,
kernel_initializer=k_init, kernel_regularizer=k_reg, name=name)(x)
if activation is not None:
if activation == "relu":
x = Activation('relu')(x)
return x
def dconv_3d(x, filter_num, ks, strides=None, padding=None, activation=None, name=None):
if strides is None:
strides = (1, 1, 1)
x = Conv3DTranspose(filter_num, ks, strides=strides, padding=padding,
kernel_initializer=k_init, name=name)(x)
if activation is not None:
if activation == "relu":
x = Activation('relu')(x)
return x
def act(x, activation=None):
if activation == "relu":
x = Activation('relu')(x)
return x
def normal(x, normal_type=None):
if normal_type is not None:
if normal_type == "bn":
x = BatchNormalization(axis=-1)(x)
return x
def bilinear_sampler(x, v):
def get_grid_array(N, H, W, h, w):
N_i = tf.range(N)
H_i = tf.range(h+1, h+H+1)
W_i = tf.range(w+1, w+W+1)
n, h, w, = tf.meshgrid(N_i, H_i, W_i, indexing='ij')
n = tf.expand_dims(n, axis=3)
h = tf.expand_dims(h, axis=3)
w = tf.expand_dims(w, axis=3)
n = tf.cast(n, tf.float32)
h = tf.cast(h, tf.float32)
w = tf.cast(w, tf.float32)
return n, h, w
shape = tf.shape(x)
N = shape[0]
H_ = H = shape[1]
W_ = W = shape[2]
h = w = 0
vy, vx = tf.split(v, 2, axis=3)
n, h, w = get_grid_array(N, H, W, h, w) # [N, H, W, 3]
vx0 = tf.floor(vx)
vy0 = tf.floor(vy)
vx1 = vx0 + 1
vy1 = vy0 + 1 # [N, H, W, 1]
H_1 = tf.cast(H_-1, tf.float32)
W_1 = tf.cast(W_-1, tf.float32)
iy0 = tf.clip_by_value(vy0, 0., H_1)
iy1 = tf.clip_by_value(vy1, 0., H_1)
ix0 = tf.clip_by_value(vx0, 0., W_1)
ix1 = tf.clip_by_value(vx1, 0., W_1)
i00 = tf.concat([n, iy0, ix0], 3)
i01 = tf.concat([n, iy1, ix0], 3)
i10 = tf.concat([n, iy0, ix1], 3)
i11 = tf.concat([n, iy1, ix1], 3) # [N, H, W, 3]
i00 = tf.cast(i00, tf.int32)
i01 = tf.cast(i01, tf.int32)
i10 = tf.cast(i10, tf.int32)
i11 = tf.cast(i11, tf.int32)
x00 = tf.gather_nd(x, i00)
x01 = tf.gather_nd(x, i01)
x10 = tf.gather_nd(x, i10)
x11 = tf.gather_nd(x, i11)
w00 = tf.cast((vx1 - vx) * (vy1 - vy), tf.float32)
w01 = tf.cast((vx1 - vx) * (vy - vy0), tf.float32)
w10 = tf.cast((vx - vx0) * (vy1 - vy), tf.float32)
w11 = tf.cast((vx - vx0) * (vy - vy0), tf.float32)
output = tf.add_n([w00*x00, w01*x01, w10*x10, w11*x11])
return output
def compute_cost_volume(inputs, t_s_ids, min_disp=None, max_disp=None, labels=None,
move_path=None, logger=None):
# 1.initialization
if isinstance(inputs, (list,)):
View_n = len(inputs)
_, H, W, C = K.int_shape(inputs[int((View_n - 1) / 2)]) # batch, height, width, channel of features
# reference (-> central view)
reference = inputs[int((View_n - 1) / 2)]
# init spatial coordinates (of central view)
cords = tf.zeros_like(inputs[0])[..., :2]
# angular coordinate (of central view)
cent_t_id = int((View_n - 1) / 2)
cent_s_id = int((View_n - 1) / 2)
# 1 label = the number of disparity
label_disp = (max_disp - min_disp) / labels
# camera moving/image view path
if move_path == "LT":
t_sign = 1
s_sign = 1
# cost list (contains a list of cost slices at all disparity offsets)
cost_l = []
# 2.iterate from the minimum to maximum disparity by every disparity unit (label_disp)
for disp in np.arange(min_disp, max_disp, label_disp):
feature_maps = []
id = 0
for t_id, s_id in zip(t_s_ids[0], t_s_ids[1]):
# append (translated) feature maps
if t_id == cent_t_id and s_id == cent_s_id:
# self
feature_maps.append(reference)
continue
else:
# add 1 dimension: W; tile: repeat to W columns.
tmp0 = tf.cast(tf.tile(tf.expand_dims(tf.clip_by_value(tf.range(H) + t_sign*(cent_t_id-t_id)*disp, 0, H), 1),
[1, W]),
tf.float32)
# add 0 dimension: H
tmp1 = tf.cast(tf.tile(tf.expand_dims(tf.clip_by_value(tf.range(W) + s_sign*(cent_s_id-s_id)*disp, 0, W), 0),
[H, 1]),
tf.float32)
cords = tf.cast(tf.tile(tf.expand_dims(tf.stack([tmp0, tmp1], axis=2), axis=0),
[tf.shape(cords)[0], 1, 1, 1]),
tf.float32)
# shift: shift/translate feature maps by disparities
target = Lambda(lambda x: bilinear_sampler(*x))([inputs[id], cords])
# others
feature_maps.append(target)
id += 1
# get a cost slice
cost = concatenate(feature_maps, name='cost_d')# DxHxWx(NC)
cost_l.append(cost)
# 3.stack all cost slices to get a [cost volume]
cost_volume = K.stack(cost_l, axis=1)
return cost_volume
def cost_aggregation(x, ca_paras=None):
base_num_filters = ca_paras["filter"]
ksize = ca_paras["ks"]
ds_stride = ca_paras["stride"]
padding = ca_paras["padding"]
num_down_conv = ca_paras["n_dc"]
activ = ca_paras["activation"]
down_convs = list()
cna_paras = {'ks': ksize, 'stride': 1, 'padding': padding, 'filter': [base_num_filters]*2,
'activation': activ, 'layer_nums': 2}
conv = cna_3b(x, cna_paras=cna_paras)
down_convs.insert(0, conv)
for i in range(num_down_conv):
if i <= num_down_conv - 1:
mult = 2
else:
mult = 4
conv = cds_3b(conv, mult * base_num_filters, ksize, ds_stride, padding)
down_convs.insert(0, conv)
up_convs = down_convs[0]
dcna_paras = {'ks': ksize, 'stride': ds_stride, 'padding': padding, 'filter': [base_num_filters],
'activation': activ, 'layer_nums': 1}
for i in range(num_down_conv):
dcna_paras["filter"][0] = K.int_shape(down_convs[i + 1])[-1]
deconv = dcna_3b(up_convs, dcna_paras=dcna_paras)
up_convs = add([deconv, down_convs[i + 1]])
cost = dconv_3d(up_convs, 1, ksize, strides=ds_stride, padding=padding)
aggre_cost = Lambda(lambda x: -x)(cost)
return aggre_cost
def slicing(x, index, index_end=None, interval=1, split=1):
if index_end is None:
return x[..., index:index+1:interval]
else:
if split > 1:
x_ = tf.split(x, split, axis=-1)
return tf.concat(x_[index:index_end:interval], axis=4)
else:
return x[..., index:index_end:interval]
def soft_min_reg(cv, axis=None, min_disp=None, max_disp=None, labels=None):
if axis == 1:
cv = Lambda(lambda x: K.squeeze(x, axis=-1))(cv)
disp_map = K.reshape(K.arange(min_disp, max_disp - 0.000001, (max_disp - min_disp)/labels, dtype="float32"),
(1, 1, labels, 1))
if axis == 1:
output = K.conv2d(cv, disp_map, strides=(1, 1), padding='valid', data_format="channels_first")
x = K.expand_dims(K.squeeze(output, axis=1), axis=-1)
else:
x = K.conv2d(cv, disp_map, strides=(1, 1), padding='valid')
return x
class ReflectionPadding2D(Layer):
def __init__(self, padding=(1, 1), **kwargs):
self.padding = tuple(padding)
super(ReflectionPadding2D, self).__init__(**kwargs)
def compute_output_shape(self, s):
return (s[0], s[1] + self.padding[0][0] + self.padding[0][1],
s[2] + self.padding[1][0] + self.padding[1][1], s[3])
def call(self, x, mask=None):
w_pad,h_pad = self.padding
return tf.pad(x, [[0, 0], [h_pad[0], h_pad[1]], [w_pad[0], w_pad[1]], [0, 0] ], 'REFLECT')
######################################################
# Define blocks
######################################################
def cna_2b(x, cna_paras):
ks = (cna_paras["ks"], cna_paras["ks"])
strides = (cna_paras["stride"], cna_paras["stride"])
padding = cna_paras["padding"]
filt_nums = cna_paras["filter"]
activation = cna_paras["activation"]
for cnt in range(cna_paras["layer_nums"]):
x = conv_2d(x, filt_nums[cnt], ks, strides=strides, padding=padding)
x = normal(x, normal_type=norm_type)
x = act(x, activation)
if "dropout" in cna_paras.keys():
x = Dropout(cna_paras["dropout"])(x)
return x
def cna_3b(x, cna_paras):
if isinstance(cna_paras["ks"], int):
ks = (cna_paras["ks"], cna_paras["ks"], cna_paras["ks"])
else:
ks = cna_paras["ks"]
strides = (cna_paras["stride"], cna_paras["stride"], cna_paras["stride"])
padding = cna_paras["padding"]
filt_nums = cna_paras["filter"]
if "activation" in cna_paras.keys():
activation = cna_paras["activation"]
else:
activation = "relu" # default
for cnt in range(cna_paras["layer_nums"]):
x = conv_3d(x, filt_nums[cnt], ks, strides=strides, padding=padding)
x = normal(x, normal_type=norm_type)
x = act(x, activation)
return x
def cds_3b(x, filters, ksize, ds_stride, padding):
cna_paras = {'ks': ksize, 'stride': ds_stride, 'padding': padding, 'filter': [filters],
'activation': "relu", 'layer_nums': 1}
conv = cna_3b(x, cna_paras)
cna_paras['stride'] = 1
conv = cna_3b(conv, cna_paras)
conv = cna_3b(conv, cna_paras)
return conv
def dcna_3b(x, dcna_paras):
ks = (dcna_paras["ks"], dcna_paras["ks"], dcna_paras["ks"])
strides = (dcna_paras["stride"], dcna_paras["stride"], dcna_paras["stride"])
padding = dcna_paras["padding"]
filt_nums = dcna_paras["filter"]
activation = dcna_paras["activation"]
for cnt in range(dcna_paras["layer_nums"]):
x = dconv_3d(x, filt_nums[cnt], ks, strides=strides, padding=padding)
x = normal(x, normal_type=norm_type)
x = act(x, activation)
return x
######################################################
# Define modules
######################################################
def cna_m(x, cna_configs, layer_names='random', conv_dims=2):
if layer_names == "random":
ks = (cna_configs["ks"], cna_configs["ks"])
stride = cna_configs["stride"]
padding = cna_configs["padding"]
filt_nums = cna_configs["filter"]
activation = cna_configs["activation"]
conv_type = cna_configs["conv_type"]
for cnt in range(cna_configs["layer_nums"]):
if conv_dims == 2:
x = conv_2d(x, filt_nums[cnt], ks, padding=padding, conv_type=conv_type)
elif conv_dims == 3:
x = conv_3d(x, filt_nums[cnt], ks, padding=padding)
x = normal(x, normal_type=norm_type)
x = act(x, activation)
return x
def feature_extraction_m(input_shape, feat_paras=None):
x = Input(shape=input_shape)
ys = []
# feature
if 'pyr' in feat_paras.keys():
pyr = feat_paras['pyr']
else:
pyr = False
ks = (feat_paras['ks'], feat_paras['ks'])
padding = feat_paras['padding']
ret_feat_levels = feat_paras['ret_feat_levels']
stride = feat_paras['stride']
filt_nums = feat_paras['filter']
for cnt in range(feat_paras['layer_nums']):
cna_paras = {"filter": [feat_paras["filter"][cnt]]*1, "ks": feat_paras["ks"], "stride": stride[1], "padding": padding,
"activation": feat_paras["activation"], "layer_nums": 1}
if cnt == 0:
y = x
# downsample
y = conv_2d(y, filt_nums[cnt], ks, strides=(stride[0], stride[0]), padding=padding)
# conv
y = cna_2b(y, cna_paras)
if pyr and cnt >= (feat_paras['layer_nums'] - ret_feat_levels):
ys.append(y)
if not pyr:
ys.append(y)
sfm = Model(inputs=[x], outputs=ys) # shared feature module
return sfm
def channel_attention_m(x, residual=False, stream=False):
if not stream:
# dims: BxHxWxCxM (M streams)
if isinstance(x, list):
x = Lambda(lambda var: K.stack(var, axis=4))(x)
y = GlobalMaxPooling3D()(x)
y = Lambda(lambda var: K.expand_dims(K.expand_dims(K.expand_dims(var,
axis=1),
axis=2),
axis=3))(y)
y = Conv3D(filters=int(K.int_shape(x)[-1]/2), kernel_size=1, strides=1)(y)
y = Activation("relu")(y)
y = Conv3D(filters=K.int_shape(x)[-1], kernel_size=1, strides=1)(y)
y = Activation("softmax")(y)
y = Lambda(lambda var: tf.multiply(*var))([x, y])
if residual:
y = Add()([y, x])
else:
# dims: BxHxWxCxM (M streams)
y = GlobalMaxPooling3D()(x)
y = Lambda(lambda var: K.expand_dims(K.expand_dims(K.expand_dims(var,
axis=1),
axis=2),
axis=3))(y)
y = Conv3D(filters=int(K.int_shape(x)[-1]/2), kernel_size=1, strides=1)(y)
y = Activation("relu")(y)
y = Conv3D(filters=2, kernel_size=1, strides=1)(y)
y = Activation("sigmoid")(y)
y_l = []
c = int(x.get_shape().as_list()[-1] / 2)
for i in range(2):
ind_st = i*c
ind_end = (i+1)*c
x_sub = Lambda(slicing, arguments={'index': ind_st, 'index_end': ind_end})(x)
y_sub = Lambda(slicing, arguments={'index': i, 'index_end': i+1})(y)
y = Lambda(lambda var: tf.multiply(*var))([x_sub, y_sub])
if residual:
y = Add()([y, x_sub])
y_l.append(y)
y = concatenate(y_l)
return y