|
| 1 | +""" |
| 2 | +
|
| 3 | +Bidirectional A* grid planning |
| 4 | +
|
| 5 | +author: Erwin Lejeune (@spida_rwin) |
| 6 | +
|
| 7 | +See Wikipedia article (https://en.wikipedia.org/wiki/Bidirectional_search) |
| 8 | +
|
| 9 | +""" |
| 10 | + |
| 11 | +import math |
| 12 | + |
| 13 | +import matplotlib.pyplot as plt |
| 14 | + |
| 15 | +show_animation = True |
| 16 | + |
| 17 | + |
| 18 | +class BidirectionalAStarPlanner: |
| 19 | + |
| 20 | + def __init__(self, ox, oy, reso, rr): |
| 21 | + """ |
| 22 | + Initialize grid map for a star planning |
| 23 | +
|
| 24 | + ox: x position list of Obstacles [m] |
| 25 | + oy: y position list of Obstacles [m] |
| 26 | + reso: grid resolution [m] |
| 27 | + rr: robot radius[m] |
| 28 | + """ |
| 29 | + |
| 30 | + self.reso = reso |
| 31 | + self.rr = rr |
| 32 | + self.calc_obstacle_map(ox, oy) |
| 33 | + self.motion = self.get_motion_model() |
| 34 | + |
| 35 | + class Node: |
| 36 | + def __init__(self, x, y, cost, pind): |
| 37 | + self.x = x # index of grid |
| 38 | + self.y = y # index of grid |
| 39 | + self.cost = cost |
| 40 | + self.pind = pind |
| 41 | + |
| 42 | + def __str__(self): |
| 43 | + return str(self.x) + "," + str(self.y) + "," + str( |
| 44 | + self.cost) + "," + str(self.pind) |
| 45 | + |
| 46 | + def planning(self, sx, sy, gx, gy): |
| 47 | + """ |
| 48 | + Bidirectional A star path search |
| 49 | +
|
| 50 | + input: |
| 51 | + sx: start x position [m] |
| 52 | + sy: start y position [m] |
| 53 | + gx: goal x position [m] |
| 54 | + gy: goal y position [m] |
| 55 | +
|
| 56 | + output: |
| 57 | + rx: x position list of the final path |
| 58 | + ry: y position list of the final path |
| 59 | + """ |
| 60 | + |
| 61 | + nstart = self.Node(self.calc_xyindex(sx, self.minx), |
| 62 | + self.calc_xyindex(sy, self.miny), 0.0, -1) |
| 63 | + ngoal = self.Node(self.calc_xyindex(gx, self.minx), |
| 64 | + self.calc_xyindex(gy, self.miny), 0.0, -1) |
| 65 | + |
| 66 | + open_set_A, closed_set_A = dict(), dict() |
| 67 | + open_set_B, closed_set_B = dict(), dict() |
| 68 | + open_set_A[self.calc_grid_index(nstart)] = nstart |
| 69 | + open_set_B[self.calc_grid_index(ngoal)] = ngoal |
| 70 | + |
| 71 | + current_A = nstart |
| 72 | + current_B = ngoal |
| 73 | + |
| 74 | + while 1: |
| 75 | + if len(open_set_A) == 0: |
| 76 | + print("Open set A is empty..") |
| 77 | + break |
| 78 | + |
| 79 | + if len(open_set_B) == 0: |
| 80 | + print("Open set B is empty..") |
| 81 | + break |
| 82 | + |
| 83 | + c_id_A = min( |
| 84 | + open_set_A, |
| 85 | + key=lambda o: self.find_total_cost(open_set_A, o, current_B)) |
| 86 | + |
| 87 | + current_A = open_set_A[c_id_A] |
| 88 | + |
| 89 | + c_id_B = min( |
| 90 | + open_set_B, |
| 91 | + key=lambda o: self.find_total_cost(open_set_B, o, current_A)) |
| 92 | + |
| 93 | + current_B = open_set_B[c_id_B] |
| 94 | + |
| 95 | + # show graph |
| 96 | + if show_animation: # pragma: no cover |
| 97 | + plt.plot(self.calc_grid_position(current_A.x, self.minx), |
| 98 | + self.calc_grid_position(current_A.y, self.miny), "xc") |
| 99 | + plt.plot(self.calc_grid_position(current_B.x, self.minx), |
| 100 | + self.calc_grid_position(current_B.y, self.miny), "xc") |
| 101 | + # for stopping simulation with the esc key. |
| 102 | + plt.gcf().canvas.mpl_connect('key_release_event', |
| 103 | + lambda event: [exit( |
| 104 | + 0) if event.key == 'escape' else None]) |
| 105 | + if len(closed_set_A.keys()) % 10 == 0: |
| 106 | + plt.pause(0.001) |
| 107 | + |
| 108 | + if current_A.x == current_B.x and current_A.y == current_B.y: |
| 109 | + print("Found goal") |
| 110 | + meetpointA = current_A |
| 111 | + meetpointB = current_B |
| 112 | + break |
| 113 | + |
| 114 | + # Remove the item from the open set |
| 115 | + del open_set_A[c_id_A] |
| 116 | + del open_set_B[c_id_B] |
| 117 | + |
| 118 | + # Add it to the closed set |
| 119 | + closed_set_A[c_id_A] = current_A |
| 120 | + closed_set_B[c_id_B] = current_B |
| 121 | + |
| 122 | + # expand_grid search grid based on motion model |
| 123 | + for i, _ in enumerate(self.motion): |
| 124 | + continue_A = False |
| 125 | + continue_B = False |
| 126 | + |
| 127 | + child_node_A = self.Node(current_A.x + self.motion[i][0], |
| 128 | + current_A.y + self.motion[i][1], |
| 129 | + current_A.cost + self.motion[i][2], |
| 130 | + c_id_A) |
| 131 | + |
| 132 | + child_node_B = self.Node(current_B.x + self.motion[i][0], |
| 133 | + current_B.y + self.motion[i][1], |
| 134 | + current_B.cost + self.motion[i][2], |
| 135 | + c_id_B) |
| 136 | + |
| 137 | + n_id_A = self.calc_grid_index(child_node_A) |
| 138 | + n_id_B = self.calc_grid_index(child_node_B) |
| 139 | + |
| 140 | + # If the node is not safe, do nothing |
| 141 | + if not self.verify_node(child_node_A): |
| 142 | + continue_A = True |
| 143 | + |
| 144 | + if not self.verify_node(child_node_B): |
| 145 | + continue_B = True |
| 146 | + |
| 147 | + if n_id_A in closed_set_A: |
| 148 | + continue_A = True |
| 149 | + |
| 150 | + if n_id_B in closed_set_B: |
| 151 | + continue_B = True |
| 152 | + |
| 153 | + if not continue_A: |
| 154 | + if n_id_A not in open_set_A: |
| 155 | + # discovered a new node |
| 156 | + open_set_A[n_id_A] = child_node_A |
| 157 | + else: |
| 158 | + if open_set_A[n_id_A].cost > child_node_A.cost: |
| 159 | + # This path is the best until now. record it |
| 160 | + open_set_A[n_id_A] = child_node_A |
| 161 | + |
| 162 | + if not continue_B: |
| 163 | + if n_id_B not in open_set_B: |
| 164 | + # discovered a new node |
| 165 | + open_set_B[n_id_B] = child_node_B |
| 166 | + else: |
| 167 | + if open_set_B[n_id_B].cost > child_node_B.cost: |
| 168 | + # This path is the best until now. record it |
| 169 | + open_set_B[n_id_B] = child_node_B |
| 170 | + |
| 171 | + rx, ry = self.calc_final_bidirectional_path( |
| 172 | + meetpointA, meetpointB, closed_set_A, closed_set_B) |
| 173 | + |
| 174 | + return rx, ry |
| 175 | + |
| 176 | + def calc_final_bidirectional_path(self, meetnode_A, meetnode_B, closed_set_A, closed_set_B): |
| 177 | + rx_A, ry_A = self.calc_final_path(meetnode_A, closed_set_A) |
| 178 | + rx_B, ry_B = self.calc_final_path(meetnode_B, closed_set_B) |
| 179 | + |
| 180 | + rx_A.reverse() |
| 181 | + ry_A.reverse() |
| 182 | + |
| 183 | + rx = rx_A + rx_B |
| 184 | + ry = ry_A + ry_B |
| 185 | + |
| 186 | + return rx, ry |
| 187 | + |
| 188 | + def calc_final_path(self, ngoal, closedset): |
| 189 | + # generate final course |
| 190 | + rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [ |
| 191 | + self.calc_grid_position(ngoal.y, self.miny)] |
| 192 | + pind = ngoal.pind |
| 193 | + while pind != -1: |
| 194 | + n = closedset[pind] |
| 195 | + rx.append(self.calc_grid_position(n.x, self.minx)) |
| 196 | + ry.append(self.calc_grid_position(n.y, self.miny)) |
| 197 | + pind = n.pind |
| 198 | + |
| 199 | + return rx, ry |
| 200 | + |
| 201 | + @staticmethod |
| 202 | + def calc_heuristic(n1, n2): |
| 203 | + w = 1.0 # weight of heuristic |
| 204 | + d = w * math.hypot(n1.x - n2.x, n1.y - n2.y) |
| 205 | + return d |
| 206 | + |
| 207 | + def find_total_cost(self, open_set, lambda_, n1): |
| 208 | + g_cost = open_set[lambda_].cost |
| 209 | + h_cost = self.calc_heuristic(n1, open_set[lambda_]) |
| 210 | + f_cost = g_cost + h_cost |
| 211 | + return f_cost |
| 212 | + |
| 213 | + def calc_grid_position(self, index, minp): |
| 214 | + """ |
| 215 | + calc grid position |
| 216 | +
|
| 217 | + :param index: |
| 218 | + :param minp: |
| 219 | + :return: |
| 220 | + """ |
| 221 | + pos = index * self.reso + minp |
| 222 | + return pos |
| 223 | + |
| 224 | + def calc_xyindex(self, position, min_pos): |
| 225 | + return round((position - min_pos) / self.reso) |
| 226 | + |
| 227 | + def calc_grid_index(self, node): |
| 228 | + return (node.y - self.miny) * self.xwidth + (node.x - self.minx) |
| 229 | + |
| 230 | + def verify_node(self, node): |
| 231 | + px = self.calc_grid_position(node.x, self.minx) |
| 232 | + py = self.calc_grid_position(node.y, self.miny) |
| 233 | + |
| 234 | + if px < self.minx: |
| 235 | + return False |
| 236 | + elif py < self.miny: |
| 237 | + return False |
| 238 | + elif px >= self.maxx: |
| 239 | + return False |
| 240 | + elif py >= self.maxy: |
| 241 | + return False |
| 242 | + |
| 243 | + # collision check |
| 244 | + if self.obmap[node.x][node.y]: |
| 245 | + return False |
| 246 | + |
| 247 | + return True |
| 248 | + |
| 249 | + def calc_obstacle_map(self, ox, oy): |
| 250 | + |
| 251 | + self.minx = round(min(ox)) |
| 252 | + self.miny = round(min(oy)) |
| 253 | + self.maxx = round(max(ox)) |
| 254 | + self.maxy = round(max(oy)) |
| 255 | + print("minx:", self.minx) |
| 256 | + print("miny:", self.miny) |
| 257 | + print("maxx:", self.maxx) |
| 258 | + print("maxy:", self.maxy) |
| 259 | + |
| 260 | + self.xwidth = round((self.maxx - self.minx) / self.reso) |
| 261 | + self.ywidth = round((self.maxy - self.miny) / self.reso) |
| 262 | + print("xwidth:", self.xwidth) |
| 263 | + print("ywidth:", self.ywidth) |
| 264 | + |
| 265 | + # obstacle map generation |
| 266 | + self.obmap = [[False for _ in range(self.ywidth)] |
| 267 | + for _ in range(self.xwidth)] |
| 268 | + for ix in range(self.xwidth): |
| 269 | + x = self.calc_grid_position(ix, self.minx) |
| 270 | + for iy in range(self.ywidth): |
| 271 | + y = self.calc_grid_position(iy, self.miny) |
| 272 | + for iox, ioy in zip(ox, oy): |
| 273 | + d = math.hypot(iox - x, ioy - y) |
| 274 | + if d <= self.rr: |
| 275 | + self.obmap[ix][iy] = True |
| 276 | + break |
| 277 | + |
| 278 | + @staticmethod |
| 279 | + def get_motion_model(): |
| 280 | + # dx, dy, cost |
| 281 | + motion = [[1, 0, 1], |
| 282 | + [0, 1, 1], |
| 283 | + [-1, 0, 1], |
| 284 | + [0, -1, 1], |
| 285 | + [-1, -1, math.sqrt(2)], |
| 286 | + [-1, 1, math.sqrt(2)], |
| 287 | + [1, -1, math.sqrt(2)], |
| 288 | + [1, 1, math.sqrt(2)]] |
| 289 | + |
| 290 | + return motion |
| 291 | + |
| 292 | + |
| 293 | +def main(): |
| 294 | + print(__file__ + " start!!") |
| 295 | + |
| 296 | + # start and goal position |
| 297 | + sx = 10.0 # [m] |
| 298 | + sy = 10.0 # [m] |
| 299 | + gx = 50.0 # [m] |
| 300 | + gy = 50.0 # [m] |
| 301 | + grid_size = 2.0 # [m] |
| 302 | + robot_radius = 1.0 # [m] |
| 303 | + |
| 304 | + # set obstacle positions |
| 305 | + ox, oy = [], [] |
| 306 | + for i in range(-10, 60): |
| 307 | + ox.append(i) |
| 308 | + oy.append(-10.0) |
| 309 | + for i in range(-10, 60): |
| 310 | + ox.append(60.0) |
| 311 | + oy.append(i) |
| 312 | + for i in range(-10, 61): |
| 313 | + ox.append(i) |
| 314 | + oy.append(60.0) |
| 315 | + for i in range(-10, 61): |
| 316 | + ox.append(-10.0) |
| 317 | + oy.append(i) |
| 318 | + for i in range(-10, 40): |
| 319 | + ox.append(20.0) |
| 320 | + oy.append(i) |
| 321 | + for i in range(0, 40): |
| 322 | + ox.append(40.0) |
| 323 | + oy.append(60.0 - i) |
| 324 | + |
| 325 | + if show_animation: # pragma: no cover |
| 326 | + plt.plot(ox, oy, ".k") |
| 327 | + plt.plot(sx, sy, "og") |
| 328 | + plt.plot(gx, gy, "ob") |
| 329 | + plt.grid(True) |
| 330 | + plt.axis("equal") |
| 331 | + |
| 332 | + bidir_a_star = BidirectionalAStarPlanner(ox, oy, grid_size, robot_radius) |
| 333 | + rx, ry = bidir_a_star.planning(sx, sy, gx, gy) |
| 334 | + |
| 335 | + if show_animation: # pragma: no cover |
| 336 | + plt.plot(rx, ry, "-r") |
| 337 | + plt.pause(.0001) |
| 338 | + plt.show() |
| 339 | + |
| 340 | + |
| 341 | +if __name__ == '__main__': |
| 342 | + main() |
0 commit comments