-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
61 lines (48 loc) · 2.52 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import tensorflow as tf
def make_weight_variable(name, num_inputs, num_outputs):
return tf.get_variable(
name,
[num_inputs, num_outputs],
initializer=tf.contrib.layers.variance_scaling_initializer()
)
class Model:
def __init__(self, chars, max_steps, lstm_units=250, l1_units=200, l2_units=150,
learning_rate=0.001, l2=0.001):
self.chars = chars
self.max_steps = max_steps
# Define placeholders for training data
self.features = tf.placeholder(dtype=tf.int32, shape=[None, max_steps])
self.labels = tf.placeholder(dtype=tf.int32, shape=[None, max_steps])
self.mask = tf.placeholder(dtype=tf.float32, shape=[None, max_steps])
# Define LSTM layer
features_one_hot = tf.one_hot(self.features, len(chars) + 1, dtype=tf.float32)
lstm_3d, _ = tf.nn.dynamic_rnn(
cell=tf.contrib.rnn.LSTMCell(num_units=lstm_units),
dtype=tf.float32,
inputs=features_one_hot
)
lstm_flat = tf.reshape(lstm_3d, [-1, lstm_units])
# Define first ReLU layer
l1_weights = make_weight_variable("l1-weights", lstm_units, l1_units)
l1_biases = tf.Variable(tf.constant(0.1, shape=[l1_units]), name='l1-biases')
layer1 = tf.nn.relu(tf.matmul(lstm_flat, l1_weights) + l1_biases)
# Define second ReLU layer
l2_weights = make_weight_variable("l2-weights", l1_units, l2_units)
l2_biases = tf.Variable(tf.constant(0.1, shape=[l2_units]), name='l2-biases')
layer2 = tf.nn.relu(tf.matmul(layer1, l2_weights) + l2_biases)
# Define output layer
out_len = len(chars) + 1
out_weights = make_weight_variable("out-weights", l2_units, out_len)
out_biases = tf.Variable(tf.constant(0.1, shape=[out_len]), name='out-biases')
self.out_logits = tf.matmul(layer2, out_weights) + out_biases
# Define training objective
loss_flat = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=tf.reshape(self.labels, [-1]),
logits=self.out_logits
)
loss_flat_masked = loss_flat * tf.reshape(self.mask, [-1])
self.loss = tf.reduce_sum(loss_flat_masked) / tf.reduce_sum(self.mask)
weight_vars = [v for v in tf.trainable_variables() if 'bias' not in v.name]
self.l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in weight_vars]) * l2
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
self.train_op = optimizer.minimize(self.loss + self.l2_loss)