-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2.filter_data.r
259 lines (209 loc) · 8.75 KB
/
2.filter_data.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#------ filter_data.r -------------------------------------
# This script filter the data to remove scarce microbes.
#
#------------------------------------------------------------
#------ includes ------------
library(tidyverse)
library(magrittr)
source('functions.R')
#------ functions ---------
filter_data <- function(x) {
Core_microbes <-
ASV_cow_presence %>%
group_by(Farm) %>%
filter(cows >= x*Total_Cows) # Can change the proportion of cows in which a microbe occurs (p)
ASV_Core <- inner_join(ASV_data_final, Core_microbes, by = c("Farm", "ASV_ID")) %>%
select(-c(cows, Total_Cows))
# Rerun sensitivity for abundance with the core microbes
sensitivity_abundance <- NULL
for (t in seq(0,0.4,0.05)){
print(t)
thresh <- ASV_Core %>% group_by(Farm) %>% summarise(thresh=quantile(Abundance, t))
ASV_data_filtered_abund <-
ASV_Core %>%
left_join(thresh) %>%
filter(Abundance>thresh)
sensitivity_abundance <-
bind_rows(sensitivity_abundance,
inner_join(ASV_Core %>% group_by(Farm) %>% summarise(N=length(unique(ASV_ID))),
ASV_data_filtered_abund %>% group_by(Farm) %>% summarise(N_filtered=length(unique(ASV_ID)))
) %>%
mutate(prop_left=N_filtered/N,
t=t)
)
}
ggplot(sensitivity_abundance, aes(t, prop_left, color=Farm))+
geom_line()+geom_point()+theme_bw()+
facet_wrap(~Farm)+scale_y_continuous(limits=c(0,1))
# Check the abundance distributions of core microbes
ASV_Core %>%
ggplot(aes(Abundance))+geom_histogram()+facet_wrap(~Farm, scales = 'free')+theme_bw()
ASV_Core %>% group_by(Farm) %>% summarise(N=n_distinct(ASV_ID))
# Write the final data set of filtered microbes
sx <- sprintf("%02d", x*100)
write_csv(ASV_Core, paste("local_output/core_ASV_", sx, ".csv", sep = ""))
}
# Run --------------------------------
ASV_data_final <- read_csv("local_output/ASV_processed_data.csv")
ASV_data_final %>% group_by(Country,Farm) %>% summarise(cows=n_distinct(Cow_Code))
ASV_data_final %>% group_by(Country,Farm) %>% summarise(ASVs=n_distinct(ASV_ID))
# Match farm names to those in the original paper
ASV_data_final %<>%
mutate(Farm=replace(Farm, Farm=='NUDC', 'UK1')) %>%
mutate(Farm=replace(Farm, Farm=='Park', 'UK2')) %>%
mutate(Farm=replace(Farm, Farm=='Bianchini', 'IT1')) %>%
mutate(Farm=replace(Farm, Farm=='Franciosi', 'IT2')) %>%
mutate(Farm=replace(Farm, Farm=='Gandolfi', 'IT3')) %>%
mutate(Farm=replace(Farm, Farm=='Minkiö', 'FI1')) %>%
mutate(Farm=replace(Farm, Farm=='Röbäcksdalen', 'SE1'))
ASV_data_final %>% distinct(Country, Farm)
# Total number of ASVs
length(unique(ASV_data_final$ASV_ID))
# Number of ASVs in each farm
ASV_data_final %>%
group_by(Country, Farm) %>% summarise(n=n_distinct(ASV_ID))
## ASV abundance in farm ---------------------------------------------------
# ASV abundance - filter out microbes that are very rare within the farm
ASV_data_final %>% arrange(Farm, Abundance)
sensitivity_abundance <- NULL
for (t in seq(0,0.4,0.05)){
print(t)
thresh <- ASV_data_final %>%
group_by(Farm) %>%
summarise(thresh=quantile(Abundance, t))
ASV_data_filtered_abund <-
ASV_data_final %>%
left_join(thresh) %>%
filter(Abundance>thresh)
sensitivity_abundance <- bind_rows(sensitivity_abundance,
inner_join(
ASV_data_final %>% group_by(Farm) %>% summarise(N=length(unique(ASV_ID))),
ASV_data_filtered_abund %>% group_by(Farm) %>%
summarise(N_filtered=length(unique(ASV_ID)))) %>%
mutate(prop_left=N_filtered/N,t=t))
}
ggplot(sensitivity_abundance, aes(t, prop_left, color=Farm))+
geom_line()+geom_point()+theme_bw()+facet_wrap(~Farm)
## ASV relative abundance in cows ------------------------------------------
# Filter out microbes whose relative abundance within the sample (cow) is low
ASV_data_final %>% arrange(Farm, Abundance)
tot_abund <-
ASV_data_final %>% group_by(Country,Farm,Cow_Code) %>%
summarise(tot=sum(Abundance))
rel_abund <-
left_join(ASV_data_final,tot_abund) %>%
mutate(rel_abund=Abundance/tot)
rel_abund %>%
group_by(Farm) %>% summarise(max(rel_abund))
sensitivity_rel_abundance <- NULL
for (t in seq(0,0.05,0.001)){
print(t)
ASV_data_filtered_abund <-
rel_abund %>%
group_by(Cow_Code) %>%
filter(rel_abund>t)
sensitivity_rel_abundance <- bind_rows(sensitivity_rel_abundance,
inner_join(
ASV_data_final %>% group_by(Farm) %>% summarise(N=length(unique(ASV_ID))),
ASV_data_filtered_abund %>% group_by(Farm) %>%
summarise(N_filtered=length(unique(ASV_ID)))) %>%
mutate(prop_left=N_filtered/N,t=t))
}
ggplot(sensitivity_rel_abundance, aes(t, prop_left, color=Farm))+
geom_line()+geom_point()+theme_bw()+facet_wrap(~Farm)
## Core microbes -----------------------------------------------------------
# Core microbes are defined as those occurring in a certain proportion of cows
# within each farm
ASV_cow_presence <- ASV_data_final %>%
group_by(Farm,ASV_ID) %>%
summarise(cows=n_distinct(Cow_Code)) %>%
arrange(desc(cows))
# how many cows in each farm:
cows_in_farms <-
ASV_data_final %>%
group_by(Farm) %>%
summarise(Total_Cows=n_distinct(Cow_Code))
sum(cows_in_farms$Total_Cows) # Total number of cows in the region
ASV_cow_presence %<>% left_join(cows_in_farms)
# An example for a single farm
ASV_cow_presence %>%
filter(Farm=='UK1') %>%
group_by(cows) %>%
count() %>%
ggplot(aes(x=cows, y=n))+geom_col()
sensitivity_core <- NULL
for (p in seq(0,0.6,0.05)){
print(p)
Core_microbes <-
ASV_cow_presence %>%
group_by(Farm) %>%
filter(cows >= p*Total_Cows) # Can change the proportion of cows in which a microbe occurs (p)
sensitivity_core <- bind_rows(sensitivity_core,
inner_join(
ASV_data_final %>% group_by(Farm) %>% summarise(N=n_distinct(ASV_ID)),
Core_microbes %>% group_by(Farm) %>% summarise(N_filtered=n_distinct(ASV_ID))
) %>%
mutate(prop_left=N_filtered/N,p=p)
)
}
# Note that from the onset, even with p=0, not all microbes occur in all cows, so the starting value for p=0 is not 1.
pdf(paste(paper_output_path, "sensitivity_core.pdf", sep=""), 10, 6)
ggplot(sensitivity_core, aes(p, prop_left, color=Farm))+
geom_line()+
geom_point()+
facet_wrap(~Farm)+
geom_vline(xintercept = c(0.3), linetype='dashed')+
scale_x_continuous(breaks = seq(0, 0.6, 0.15))+
labs(x='% of cows in which microbes occur', y='Proportion of microbes defined as core')+
paper_figs_theme_no_legend
dev.off()
pdf('local_output/figures/core_microbes_sensitivity_example.pdf', 10, 6)
sensitivity_core %>%
filter(Farm=='UK1') %>%
ggplot(aes(p, prop_left, color=Farm))+
geom_line(size=1.5)+geom_point()+
# facet_wrap(~Farm)+
geom_vline(xintercept = c(0.05,0.3,0.5), linetype='dashed')+
labs(x='Proportion of cows in which microbes occur', y='Proportion of microbes defined as core')+
theme_bw()+
theme(axis.text = element_text(size=22),
axis.title = element_text(size=22),
legend.position = 'none')
dev.off()
# Compare core micrbes with relative abundance filtering ------------------
p=0.3
Core_microbes <- ASV_cow_presence %>%
group_by(Farm) %>%
filter(cows >= p*Total_Cows)
t=0.005
ASV_data_filtered_abund <-
rel_abund %>%
group_by(Cow_Code) %>%
filter(rel_abund>t)
n <- intersect(ASV_data_filtered_abund$ASV_ID,Core_microbes$ASV_ID)
d <- union(ASV_data_filtered_abund$ASV_ID,Core_microbes$ASV_ID)
length(n)/length(d)
inner_join(ASV_cow_presence, rel_abund) %>%
mutate(prop_cows=cows/Total_Cows) %>%
distinct(ASV_ID,prop_cows,rel_abund) %>%
filter(prop_cows>0.3) %>%
ggplot(aes(prop_cows,rel_abund))+
geom_point()
# Comparing the two filtering methods, the core microbes is better because it
# removes also the scarce microbes, which are not present in many cows by
# definition. So we will subset the data by core microbes. The huge drop in the
# plot is at p=0.05
# Output data -------------------------------------------------------------
# filtering the data by percents
# core microbes in 50% of cows
filter_data(0.5)
# core microbes in 5% of cows
filter_data(0.05)
# core microbes in 30% of cows
filter_data(0.3)
# core microbes in 20% of cows
filter_data(0.2)
# core microbes in 10% of cows
filter_data(0.1)
# core microbes in 80% of cows
filter_data(0.8)