forked from catniplab/ML-music-analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_music.py
107 lines (81 loc) · 3.88 KB
/
make_music.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
"""
This script is for generating new music based on the LocusLab datasets and the models trained on them.
"""
import json
import torch
import simmanager
import subprocess
from absl import app, flags
from scipy.io import loadmat
from os.path import join as opj
from random_word import RandomWords
from utils.models import MusicRNN
from utils.midi import to_midi, write_song
FLAGS = flags.FLAGS
# file system
flags.DEFINE_string('results_path', 'songs', 'Where to store new songs.')
flags.DEFINE_string('song_name', '', 'Optional song name. If empty, random song name will be generated.')
flags.DEFINE_boolean('use_timidity', True, 'Use timidity to convert the midi file to wav. Fails if timidity is not installed.')
# where to draw input
flags.DEFINE_enum('dataset', 'Piano_midi', ['JSB_Chorales', 'Nottingham', 'Piano_midi', 'MuseData'], 'Which dataset to base a song off of.')
flags.DEFINE_enum('subset', 'train', ['train', 'valid', 'test'], 'Which subset to grab a song to synthesize from')
flags.DEFINE_integer('index', 0, 'Index of the input song in the dataset.')
# song synthesis
flags.DEFINE_string('model_path', '', 'Which model to restore to use to synthesize song. If empty, output will be the original song')
flags.DEFINE_integer('length', 200, 'How many beats the song should last.')
flags.DEFINE_integer('max_on_notes', 10, 'Maximum number of notes to be played during a beat.')
flags.DEFINE_integer('min_on_notes', 0, 'Minimum number of notes to be played during a beat.')
flags.DEFINE_float('noise_variance', 0.05, 'Gaussian noise may be added to the model input to knock it out of periodic behavior.')
def make_song_name():
try:
rw = RandomWords()
rws = rw.get_random_words()
good_rws = [w for w in rws if '\'' not in w and ' ' not in w]
return good_rws[0] + '_' + good_rws[1]
except TypeError:
print('Warning: `make_song_name` failed. Trying again.')
return make_song_name()
def main(_argv):
# construct simulation manager
if FLAGS.song_name != '':
song_name = FLAGS.song_name
else:
song_name = make_song_name()
print(f'Beginning new song {song_name}.')
sm = simmanager.SimManager(
song_name, FLAGS.results_path, write_protect_dirs=False, tee_stdx_to='output.log')
with sm:
# check for timidity
if FLAGS.use_timidity and not subprocess.call('timidity') == 0:
raise OSError(
'`timidity` is not installed?')
# dump FLAGS for this experiment
with open(opj(sm.paths.data_path, 'FLAGS.json'), 'w') as f:
flag_dict = {}
for k in FLAGS._flags().keys():
if k not in FLAGS.__dict__['__hiddenflags']:
flag_dict[k] = FLAGS.__getattr__(k)
json.dump(flag_dict, f)
# check for old model to restore from
model = None
if FLAGS.model_path != '':
with open(opj(FLAGS.model_path, 'data', 'FLAGS.json'), 'r') as f:
old_FLAGS = json.load(f)
architecture = old_FLAGS['architecture']
n_rec = old_FLAGS['n_rec']
model = MusicRNN(architecture, n_rec)
model.load_state_dict(torch.load(
opj(FLAGS.model_path, 'results', 'model_checkpoint.pt')))
# load music sample
matdata = loadmat(f'locuslab_data/{FLAGS.dataset}.mat')
piano_roll = matdata[f'{FLAGS.subset}data'][0][FLAGS.index]
# use model to synthesize new music
if model is not None:
new_piano_roll = write_song(model, piano_roll, FLAGS)
to_midi(0, new_piano_roll, opj(sm.paths.results_path, song_name + '.mid'))
else:
to_midi(0, piano_roll, opj(sm.paths.results_path, song_name + '.mid'))
if FLAGS.use_timidity:
subprocess.call(f'timidity -Ow {opj(sm.paths.results_path, song_name)}.mid', shell=True)
if __name__ == '__main__':
app.run(main)