forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconditional-detr_r50_8xb2-50e_coco.py
42 lines (40 loc) · 1.29 KB
/
conditional-detr_r50_8xb2-50e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
_base_ = ['../detr/detr_r50_8xb2-150e_coco.py']
model = dict(
type='ConditionalDETR',
num_queries=300,
decoder=dict(
num_layers=6,
layer_cfg=dict(
self_attn_cfg=dict(
_delete_=True,
embed_dims=256,
num_heads=8,
attn_drop=0.1,
cross_attn=False),
cross_attn_cfg=dict(
_delete_=True,
embed_dims=256,
num_heads=8,
attn_drop=0.1,
cross_attn=True))),
bbox_head=dict(
type='ConditionalDETRHead',
loss_cls=dict(
_delete_=True,
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=2.0)),
# training and testing settings
train_cfg=dict(
assigner=dict(
type='HungarianAssigner',
match_costs=[
dict(type='FocalLossCost', weight=2.0),
dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
dict(type='IoUCost', iou_mode='giou', weight=2.0)
])))
# learning policy
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=50, val_interval=1)
param_scheduler = [dict(type='MultiStepLR', end=50, milestones=[40])]