forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtextual_inversion.py
86 lines (77 loc) · 2.43 KB
/
textual_inversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
_base_ = '../_base_/gen_default_runtime.py'
# config for model
dtype = 'fp16'
stable_diffusion_v15_url = 'runwayml/stable-diffusion-v1-5'
placeholder_token = '<cat-toy>'
initialize_token = 'toy'
num_vectors_per_token = 1
val_prompts = [
'a <cat-toy> on packbag', 'a <cat-toy> on sofa',
'a <cat-toy> in swimming pool', 'a <cat-toy>'
]
model = dict(
type='TextualInversion',
placeholder_token=placeholder_token,
vae=dict(
type='AutoencoderKL',
from_pretrained=stable_diffusion_v15_url,
subfolder='vae'),
unet=dict(
type='UNet2DConditionModel',
from_pretrained=stable_diffusion_v15_url,
subfolder='unet'),
text_encoder=dict(
type='ClipWrapper',
clip_type='huggingface',
pretrained_model_name_or_path=stable_diffusion_v15_url,
subfolder='text_encoder'),
tokenizer=stable_diffusion_v15_url,
initialize_token=initialize_token,
num_vectors_per_token=num_vectors_per_token,
val_prompts=val_prompts,
scheduler=dict(
type='DDPMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
test_scheduler=dict(
type='DDIMScheduler',
from_pretrained=stable_diffusion_v15_url,
subfolder='scheduler'),
data_preprocessor=dict(type='DataPreprocessor', data_keys=None))
train_cfg = dict(max_iters=3000)
optim_wrapper = dict(
modules='.*trainable_embeddings',
optimizer=dict(type='AdamW', lr=5e-4),
accumulative_counts=1)
pipeline = [
dict(type='LoadImageFromFile', key='img', channel_order='rgb'),
dict(type='Resize', scale=(512, 512)),
dict(type='PackInputs')
]
dataset = dict(
type='TextualInversionDataset',
data_root='./data/',
concept_dir='cat_toy',
placeholder=placeholder_token,
template='data/imagenet_templates_small.txt',
pipeline=pipeline)
train_dataloader = dict(
dataset=dataset,
num_workers=16,
sampler=dict(type='InfiniteSampler', shuffle=True),
persistent_workers=True,
batch_size=1)
val_cfg = val_evaluator = val_dataloader = None
test_cfg = test_evaluator = test_dataloader = None
default_hooks = dict(
logger=dict(interval=10),
checkpoint=dict(type='CheckpointHook', interval=10))
custom_hooks = [
dict(
type='VisualizationHook',
interval=50,
fixed_input=True,
# visualize train dataset
vis_kwargs_list=dict(type='Data', name='fake_img'),
n_samples=1)
]